Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

At the molecular level, the predator is the prey

07.04.2005


An evolutionary arms race between predatory garter snakes and their newt quarry is turning out to be something of an illusion. At the molecular level, another battle rages. And in this second, miniature realm, it’s the newt who’s the aggressor.


Some garter snakes (Thamnophis sirtalis) have evolved the ability to eat super-toxic newts (Taricha granulosa) in the Pacific Northwest Photo by: Edmund Brodie III



Biologists at Indiana University Bloomington, Utah State University and the University of Utah present evidence in this week’s Nature that a toxin produced by the rough skinned newt, Taricha granulosa, has forced several evolutionary changes in the garter snake Thamnophis sirtalis or, more specifically, in the snake nerve cell protein that endures the toxin’s attacks.

Embedded in the surface of garter snake nerve cells is tsNa(V)1.4, a tube-shaped protein that allows sodium ions to flow into the cell. When nerve cells’ ability to move sodium in and out is hampered, paralysis and death can result. Tetrodotoxin (TTX), a powerful paralytic poison concentrated in the newts’ skin, can bind to garter snake nerve cell channels and prevent sodium ions from flowing freely.


"These channels are absolutely fundamental to every aspect of nerve and muscle function and are highly specific gateways for sodium ions," said IUB biologist Edmund Brodie III, one of the paper’s coauthors. "If the channels change too much or in the wrong way, they can’t perform their basic, everyday functions. Sodium channel genes in different vertebrates are virtually identical to each other, but not in these snakes. We’re finding a molecular arms race is driving rapid and repeated changes in the gene within this group of beasts."

For TTX to bind successfully to the sodium channel, the toxin needs something to bind to. At this moment in the garter snake’s evolutionary history, TTX infiltrates a hole on tsNa(V)1.4’s surface, binding to an aromatic amino acid and causing enough of a change in the sodium channel’s shape to impair its function. Three of the four Pacific Northwest snake populations the scientists examined have evolved some degree of resistance to TTX by making this aromatic amino acid harder for TTX to grasp -- or by removing it altogether.

One-thirtieth of the TTX normally found in a T. granulosa newt is enough to kill the average human being. The only organisms on Earth that can eat T. granulosa newts and survive are some T. sirtalis garter snakes. TTX is a defensive compound found in some puffer fish, octopuses and primitive chordates. It is used in low concentrations to treat morphine and heroine addicts. It’s also the "zombie" drug used by Haitian voodoo ritualists.

Despite its action at the molecular level, the evolution of TTX in some organisms is viewed by ecologists as a defense mechanism. In the case of T. granulosa newts and T. sirtalis garter snakes, the interaction has gone far beyond that simple fangs-off arrangement, evolving into a lethal contest of toxification/detoxification one-upsmanship.

"One might think that this sort of change in the sodium channel would be too costly to the snakes," said Utah State University biologist Shana Geffeney, who conducted the gene expression experiments. "What will be interesting in the future is to understand if there is a balance between the costs of the changes in the channel pore structure on channel function and the benefits of changes in TTX binding."

The evolution of new traits often happens one of two ways, either by altering existing genes or by changing patterns and amounts of expression. The current Nature report shows that snakes’ ability to detoxify TTX involves changes in the sodium channel gene.

"That is generally the story as it is developing," Brodie said. "Ecological arms races that go on between predator and prey are really driven at the molecular level. We have no evidence, nor reason to believe, that TTX is changing too, but rather that the toxin responds in quantity. Pour on more toxin, change the snake’s sodium channel. Add more toxin, force further changes in the channel."

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Life Sciences:

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>