Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cells in the liver take a ride

05.04.2005


Scientists at New York University School of Medicine viewing the actual journey of immune cells in the liver have found that these cells travel in the liver’s blood vessels with surprising speed and agility.



It is the first time that the movement of live immune cells called natural killer T (NKT) cells has been seen in the liver, according to a study published in the April 5, 2005, issue of the Public Library of Science, an open-access, online journal.

NKT cells are the guardians of the liver. They patrol the liver for foreign molecules on bacteria and viruses and once they find the interlopers, they alert the immune system to their presence. They are also thought to play a role in disposing of damaged cells, and in scouting for tumors.


Led by Dan R. Littman, M.D., PhD., professor of pathology and a Howard Hughes Medical Institute Investigator, and Michael L. Dustin, Ph.D., associate professor of pathology, the study analyzed over a period of hours the movement of NKT cells and their response to foreign protein, or antigen, in mice.

The study revealed a number of surprises. First, the NKT cells did their work almost entirely within the blood vessels of the liver. Previously, conventional theory held that these cells were forced from the blood into the tissues, where they did their specialized work. "This is the first example of a system in which a cell’s surveillance for antigen is intravascular rather than within a tissue," says Dr. Littman.

Second, the NKT cells appeared to have the agility of a pro athlete. The cells moved and changed directions quickly, sometimes traveling against the direction of flowing blood, no mean feat.

The researchers were able to trace the movement of the cells, by replacing a gene called CXCR6 with a gene for green fluorescent protein, which glows and makes the cells visible under a microscope. The researchers used a technique called intravital fluorescence microscope imaging to observe the behavior of the glowing cells in live mice.

The study showed that the cells were undisturbed by the rapid blood flow, latching on to the vessels, then moving in random patterns in search of infected cells. "Despite the force of the directional blood flow, the cells were able to hold their own, moving and changing direction, sometimes passing each other within a single blood vessel," explains Dr. Dustin.

In another part of the study, the researchers injected a foreign molecule. Here again, the cells behaved like athletes. They abruptly stopped and remained still, signaling that they had found the antigen and were ready to undertake their next task of alerting the immune system.

And there was yet another surprise. Drs. Littman and Dustin had expected that replacing the CXCR6 gene would directly affect the movement of the NKT cells. The CXCR6 gene encodes a receptor molecule on the surface of cells that is involved in cell movement and attraction. Replacement of the gene, which renders the cells receptor-deficient, should inhibit their ability to cling to the vessels, thereby directly inhibiting their movement.

But the researchers found that the replacement of the gene did not affect the movement of NTK cells, they hung on and patrolled for invaders just as well as cells with the gene. However, their survival rate was reduced, leading the scientists to surmise that the gene was somehow involved directly in a survival mechanism.

Dr. Littman explains the experiments so far have been artificial because the antigen was injected. The next step is to determine the kinds of pathological situations in which the cells become activated.

Dr. Dustin says his laboratory now is investigating a mouse model for liver fibrosis, triggered by bile duct obstruction, to see how cells with CXCR6 move under various conditions. "There is also significant interest in studying the way in which NKT cells respond to antigen so that they might be used in tumor vaccines," he says.

Pamela McDonnell | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>