Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As the Protein Folds: The Tail of the Gene Tells the Tale of Machado-Joseph Disease

01.04.2005


The repetition of three little "letters" within the gene that codes for the ataxin-3 protein is both the cause of and perhaps a solution to Machado-Joseph disease and an entire family of similar genetic disorders, according to researchers at the University of Pennsylvania. Their findings, which appear today in the journal Molecular Cell, present a potential therapeutic role for the ataxin-3 protein for MJD and related disorders such as Huntington’s disease.



Machado-Joseph disease is among the most common of the nine known polyglutamine repeat disorders, a family of diseases in which the genetic code for the amino acid polyglutamine CAG becomes excessively repeated within the gene, making the protein toxic. In these diseases, the expanded polyglutamine domain causes the errant protein to fold improperly, which causes a glut of misfolded protein to collect in tissues of the nervous system, much like what occurs in Alzheimer’s and Parkinson’s diseases.

"In origami, if you misfold the paper, you can just throw the paper into the recycling bin," said Nancy Bonini, a Penn professor of biology and Howard Hughes Medical Institute investigator. "If a protein misfolds, cells rely on their own recycling system to dispose of it. It turns out that ataxin-3 may influence this system, especially for recycling those that have misfolded due to excessive polyglutamine repeats.. Our findings show that ataxin-3 not only blunts the toxicity of mutant versions of itself but can also mitigate neurodegeneration induced by other such mutant polyglutamine proteins."


Machado-Joseph disease is among the most common dominantly inherited ataxias, a neurodegenerative disorder marked by a gradual decay of muscle control. MJD typically appears in adulthood, with a longer repeat expansion being associated with earlier onset and more severe disease. Its symptoms, uncoordinated motor control, worsen with time.

To study just how the ataxin-3 protein relates to disease, Bonini and her colleagues worked in a simple model organism, the fruit fly, engineering flies to express both the normal human ataxin-3 protein (the protein encoded by the SCA3 gene) and a toxic human disease form of ataxin-3 with an expanded polyglutamine repeat. When both genes are in the same fruit fly, however, the functioning gene helps protect against the effects of the bad one. Their studies surprisingly demonstrated that the protective function of the ataxin-3 protein does not rely on the multiple repeats in its tail but in a region near the head. Indeed, it seems that removing or altering this region of the gene can accelerate the progress of the disease.

"The secret of ataxin-3 is that regions near the start of the protein can counterbalance the toxicity conferred by the excessive polyglutamine repeats in the mutant protein," Bonini said. "In fact, we found evidence that mutant ataxin-3 with the extra-long polyglutamine tail can mitigate its own toxicity."

According to the researchers, it may explain why even normal ataxin-3 can have multiple CAG repeats without causing disease. In other polyglutamine diseases, mutant genes with far fewer repeats can still be toxic, whereas ataxin-3 disease mutations are generally associated with much longer repeats.

"One question now is how this information can be used clinically," Bonini said. "While more research needs to be done, we are hopeful that ataxin-3 may prevent the protein accumulation associated with polyglutamine diseases and perhaps other neurodegenerative situations as well."

Researchers whose work contributed to this study are John M. Warrick (now of the University of Richmond), Lance Morabito, Julide Bilen, Beth Gordesky-Gold and Lynn Faust of Penn, and Henry L. Paulson of the University of Iowa.

Funding for this study was provided by the National Institutes of Health, the David and Lucile Packard Foundation and the Howard Hughes Medical Institute.

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>