Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting tumor growth

01.04.2005


Scientists identify novel anti-cancer target



Blood vessels nourish healthy tissues, but also provide a conduit for tumor growth and metastasis. A collaboration of researchers from the University of Michigan, NIH, and the University of Helsinki (Finland) has identified a novel, potential therapeutic target to prevent tumor vascularization.

In the April 15th cover story of Genes & Development, Dr. Stephen J. Weiss and colleagues demonstrate that "the recently characterized enzyme, termed the membrane-type 1 matrix metalloproteinase or MT1-MMP, controls the ability of new blood vessels to respond to a specific growth factor that plays a required role in maintaining the functional properties of the vasculature."


Mammalian vasculature is composed of two main cell types: endothelial cells (that line the blood vessels) and mural cells (that surround the endothelial tubules). Mural cells surrounding large vessels are known as vascular smooth muscle cells, while those on the surface of smaller vessels are called pericytes.

The platelet-derived growth factor-ß (PDGF-ß) intracellular signaling pathway has an established role in mediating cellular communication between endothelial and mural cells, which is essential for the normal formation of blood vessels. Dr. Weiss and colleagues have discovered that MT1-MMP, whose traditional role in endothelial and mural cells is to break down the proteins that reside in the spaces between cells, has an additional role in the regulation of PDGF-ß signaling.

To determine the effect of MT1-MMP on mural cell function, Dr. Weiss and colleagues used agenetically engineered a strain of mice that lacks MT1-MMP. Experimentation with these mice, and the MT1-MMP-null tissues derived from them, revealed that MT1-MMP helps propagate the PDGF-ß signal to direct mural cell investment in the microvasculature. MT1-MMP-null mice have severely compromised vascular architecture, with irregularly sized vessels and weakened vessel walls.

Dr. Weiss explains that "These findings, coupled with complementary reports from our group that cancer cells themselves use MT1-MMP to regulate their proliferative and metastatic properties, suggest that therapeutics directed against this single target could prove efficacious in controlling the ability of tumors to recruit new blood vessels, grow and spread to distant sites."

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>