Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T researchers map role of Epstein-Barr virus in cancer

01.04.2005


Researchers at the University of Toronto have mapped the molecular details that show how a viral protein coded in the Epstein-Barr virus immortalizes cells and causes them to continuously grow, thereby predisposing people to certain types of cancer.



"Epstein-Barr virus (EBV) is one of the most common human viruses in the world and is strongly linked to certain b-cell cancers like Burkitt’s lymphoma as well as the epithelial cell cancer, nasopharyngeal carcinoma. EBNA1 is a protein coded in the Epstein-Barr virus and suspected to play a role in the development of cancer," says Lori Frappier, professor in medical genetics and microbiology at U of T and senior author of a paper in the April 1 issue of Molecular Cell.

"This research shows how EBNA1 interferes with natural cell growth regulation by binding to a particular protein in cells, causing them to continue growing and therefore increasing the risk of becoming cancerous."


Frappier explains that all cells contain the two proteins – p53 and USP7 – that work together to regulate cell growth. P53 is an important protein whose level in the cell determines whether cells will continue to proliferate or stop dividing and die. USP7 is a protein that binds to p53 and makes it stable. Under those conditions, cells stop growing and die, which is a natural state of cell regulation. Once EBNA1 is introduced to cells, however, this protein interferes with natural cell regulation by binding to USP7 and preventing its interaction with the p53 protein.

"Normally, p53 levels will increase in response to certain problems in the cell such as damaged DNA and this stops the cell from proliferating. Through binding USP7, EBNA1 keeps the p53 levels low so cells will continue to divide when they shouldn’t, which means they’re now more likely to develop into cancer," Frappier says.

"All viruses known to be able to cause cancer, like the human papillomavirus that causes cervical cancer for example, have been shown to work through this p53 protein, but up until now, no one’s ever found any regulation of p53 that’s associated with the Epstein-Barr virus. That was surprising because all other viruses that stimulate cell proliferation do it through p53. The question was why this one didn’t. What our research shows is that EBNA1 does actually impact on the p53 protein; it just does it in a different way than other viruses do."

Frappier, a Canada Research Chair in Molecular Virology, also conducted this research with Professor Aled Edwards, also of medical genetics and microbiology at U of T, and Professor Cheryl Arrowsmith, of medical biophysics at U of T and the Ontario Cancer Institute. Both Edwards and Arrowsmith are also from U of T’s Banting and Best Department of Medical Research and the Structural Genomics Consortium.

The researchers tested the effects of EBNA1 on human cells grown in culture. Frappier says the paper provides a structural explanation of this protein complex so scientists can see in molecular detail how the EBNA1 protein binds to USP7 and the resulting impact on cell growth. Once that level of detail is achieved, she says scientists can then design specific mutations in these proteins to see what happens to cells when the proteins don’t interact with one another. A better understanding of these molecular mechanisms will hopefully lead scientists and researchers to developing better methods of combating viruses like these which cause disease, says Frappier.

Lori Frappier | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>