Protein transport in mitochondria revealed

The TIM23 complex, which regulates the transport of protein to the mitochondria in a cell, is much more complicated than was previously believed. This is shown by Uppsala University researcher Maria Lind in an article in the leading journal Cell.


Together with Agnieszka Chacinska from the University of Freiburg in Germany, Maria Lind from Uppsala University is lead author of the article in Cell.

Agnieszka Chacinska’s and her study shows how the TIM23 complex functions, something that was previously unknown. The TIM23 complex regulates the transport of protein to the mitochondria in the cell. The findings reveal that the TIM23 complex is highly complicated. It can transport proteins even though there is a tension between the two sides of the complex. “The complex opens only a single channel when the protein comes, in order not to disturb the negative or positive charge on the respective sides of the complex,” explains Maria Lind. “It is essential that the voltage created by the difference in the charges be maintained when the mitochondria are to produce energy.”

The TIM23 complex can also change shape depending on where the protein is ultimately to be transported. In this way the same complex can transport proteins to different final destinations. Maria Lind and Agnieszka Chacinska have also identified a new protein, Tim21, which participates in protein transport.

Defects in mitochondria give rise to some one hundred disorders, including Huntington’s disease, Mohr-Tranebjaerg syndrome, Parkinson’s disease, and Alzheimer’s disease. “We need more knowledge about mitochondria if we are to be able to understand these diseases,” avers Maria Lind.

The study was carried out on yeast, which researchers often use as a model organism because it is one of the simplest organisms with mitochondria. “But mitochondria function in the same way in all organisms, and there are many things in yeast cells that are similar to human cells,” says Maria Lind.

Media Contact

Anneli Waara alfa

More Information:

http://www.uu.se

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors