Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breath may help diagnose infection

22.03.2005


Researchers from Johns Hopkins University are developing a novel method of testing exhaled breath to detect infection rapidly after potential exposure to a biological warfare agent. They report their findings today at the 2005 ASM Biodefense Research Meeting.



"We want to have a tool that can help in the emergency room or first responders to triage on site so that people who are infected can get treatment first," says Joany Jackman, a researcher on the project. "It’s not so hard to sample breath from many people very quickly as it is to draw blood."

When exposed to disease causing organisms, cells in the body release proteins, called cytokines, to help the immune cells identify and fight the infection. Jackman and her colleagues theorized that cytokines might work their way up through the tissue until eventually they would be exhaled through water vapor in the breath, and could be captured and identified.


"Old medical texts, in the days long before sophisticated diagnostics, would recommend that a doctor check a patient by checking his or her breath, so we knew there must be something to it," says Jackman.

In previous studies, Jackman and her colleagues exposed pigs to different infectious agents and collected breath samples, which they condensed and ran through a mass spectrometer to test for cytokines and other proteins. They were able to detect a strong surge in cytokines in exhaled breath in as little as an hour, long before any visible symptoms appeared.

"However for this technology to be an effective diagnostic, immune markers which appear as a result of exposure to agents should be absent in uninfected populations," says Jackman.

To determine whether the cytokine levels could be differentiated from a healthy population, Jackman and co-investigator Nate Boggs purchased exhaled breath samples from swine housed at a commercial pig farm and analyzed the condensates.

"In all animals, immune markers of infection were at or below the limit of detection, indicating that baseline levels of immune markers in uninfected and apparently healthy populations could be expected to be low or undetectable," says Boggs.

Now that they have shown the concept of exhaled breath diagnostics to be viable, the next step is to move into human testing. Having determined in earlier studies that the early responses of cells to infection vary based on infectious agent, they hope to create cytokine profiles that will help identify specific diseases. They are also working on redesigning the breath collector with an eye towards getting it approved by the Food and Drug Administration.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>