Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breath may help diagnose infection

22.03.2005


Researchers from Johns Hopkins University are developing a novel method of testing exhaled breath to detect infection rapidly after potential exposure to a biological warfare agent. They report their findings today at the 2005 ASM Biodefense Research Meeting.



"We want to have a tool that can help in the emergency room or first responders to triage on site so that people who are infected can get treatment first," says Joany Jackman, a researcher on the project. "It’s not so hard to sample breath from many people very quickly as it is to draw blood."

When exposed to disease causing organisms, cells in the body release proteins, called cytokines, to help the immune cells identify and fight the infection. Jackman and her colleagues theorized that cytokines might work their way up through the tissue until eventually they would be exhaled through water vapor in the breath, and could be captured and identified.


"Old medical texts, in the days long before sophisticated diagnostics, would recommend that a doctor check a patient by checking his or her breath, so we knew there must be something to it," says Jackman.

In previous studies, Jackman and her colleagues exposed pigs to different infectious agents and collected breath samples, which they condensed and ran through a mass spectrometer to test for cytokines and other proteins. They were able to detect a strong surge in cytokines in exhaled breath in as little as an hour, long before any visible symptoms appeared.

"However for this technology to be an effective diagnostic, immune markers which appear as a result of exposure to agents should be absent in uninfected populations," says Jackman.

To determine whether the cytokine levels could be differentiated from a healthy population, Jackman and co-investigator Nate Boggs purchased exhaled breath samples from swine housed at a commercial pig farm and analyzed the condensates.

"In all animals, immune markers of infection were at or below the limit of detection, indicating that baseline levels of immune markers in uninfected and apparently healthy populations could be expected to be low or undetectable," says Boggs.

Now that they have shown the concept of exhaled breath diagnostics to be viable, the next step is to move into human testing. Having determined in earlier studies that the early responses of cells to infection vary based on infectious agent, they hope to create cytokine profiles that will help identify specific diseases. They are also working on redesigning the breath collector with an eye towards getting it approved by the Food and Drug Administration.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>