Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutant Protein Developed By Hebrew University Scientists

17.03.2005


A unique technique for neutralizing the action of the leptin protein in humans and animals – thereby providing a means for controlling and better understanding of leptin function, including its role in unwanted cell growth -- has been developed by researchers at the Hebrew University of Jerusalem.


Three-dimensional structure of leptin. The region identified in the picture by numbers as amino acids 39, 40, 41, 42 underwent mutation that converted the normal leptin into an “antagonistic” version.



Leptin was discovered ten years ago and has attracted attention first because of its involvement in control of appetite and later by its effect on growth, puberty, digestion and immunological processes. Leptin can also have negative consequences, such as, for example, enhancing the spread of tumorous growths.

In his laboratory at the Hebrew University’s Faculty of Agricultural Food and Environmental Quality Sciences in Rehovot, Arieh Gertler, the Karl Bach Professor of Agricultural Biochemistry, along with his students, has developed a technique for genetically engineering mutations of the leptin protein. Prof. Gertler has been assisted in this work by graduate students Dana Gonen-Berger and Leonora Niv-Spector.and research assistant Gili Benyehuda.


In experimental work carried out cooperatively with researchers at the Agronomic Research Institute of France and the University of Paris VI, the scientists have developed a model showing which amino acids in leptin are responsible for activating leptin receptors in living cells. By replacing these amino acids with others, they were able to create a leptin variant that could bind with cell receptors, but would be unable to activate them, thereby providing a unique, novel research tool. In this way, the mutated leptin, with the substituted amino acids, acts as an “antagonist,” competing with the normal leptin for the “attention” of the cell receptors to which both leptins are attracted. The result is a “standoff” situation in which the normal leptin is neutralized.

Since leptin is involved in several cell functions, the development of this mutated “antagonistic leptin” could have significant consequences not only for better understanding of leptin action in animals but also on halting undesirable leptin effects in humans, such as undesired cell proliferation in cancer, or in controlling other pathological phenomena in which leptin is a factor.

Thus far, the researchers have succeeded in creating antagonists of human, sheep, rat and mouse leptins.

A company, Protein Laboratories Rehovot (PLR), that was formed by Prof. Gertler and the Hebrew University’s Yissum Research Development Company 18 months ago, was given the license to produce and market the mutated leptin products. Further development is currently being pursued towards testing whether leptin antagonists are capable of anti-cancer activity. This work is being pursued in cooperation with Prof. Nira Ben-Jonathan of the University of Cincinnati in the U.S., with the assistance of Prof. Gertler’s graduate student, Gila Ben Avraham.

Prof. Gertler has presented his work at a symposium of the Israeli Endocrinology Society and most recently at an international biotechnological conference in Miami, Fla., sponsored by the scientific journal Nature.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>