Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Consortium to create comprehensive tools for uncovering the functions of human, mouse genes

16.03.2005


Eleven leading biomedical organizations announced today the formation of a unique $18M, three-year public-private consortium to create a comprehensive library of gene inhibitors to be made available to the entire scientific community. Based on the method of RNA interference (RNAi), this library will give scientists worldwide the tools to knock down expression of virtually all human and mouse genes, accelerating the growth of basic knowledge of gene function in normal physiology and disease.

Called The RNAi Consortium (TRC), the collaborative effort is based at the Broad Institute of MIT and Harvard, and includes six MIT- and Harvard-associated research institutions and five international life sciences organizations.

The goal of TRC is to use the recently discovered RNAi mechanism to create widely applicable research reagents composed of short RNA hairpin sequences carried in lentiviral vectors. These can be used in a wide range of cellular and animal studies to discover the key genes underlying normal physiology and diseases – including cancer, diabetes and immunological responses. TRC will not only create and validate these reagents, but will make them available to scientists worldwide through commercial and academic distributors.


TRC is based on a scientific collaboration among principal investigators at six Boston-area research institutions: Nir Hacohen (Massachusetts General Hospital, Harvard Medical School); William Hahn (Dana-Farber Cancer Institute, Harvard Medical School); Eric Lander (Broad Institute); David Root (Broad Institute); David Sabatini (Whitehead Institute for Biomedical Research [WIBR], Massachusetts Institute of Technology; Sheila Stewart (Washington University, formerly at WIBR), and Brent Stockwell (Columbia University, formerly at WIBR).

TRC also involves five member organizations: Pharmaceutical companies Bristol-Myers Squibb, Eli Lilly and Company, and Novartis; research product manufacturer Sigma-Aldrich; and a Taiwan government-sponsored academic consortium, Academia Sinica-National Science Council. Each of the member organizations will contribute $3.6M over three years to support the effort.

"These 11 world-class entities will make common cause in a unique collaborative group to create a public good: a comprehensive set of reagents to be used in thousands of laboratories," said Lander, director of the Broad Institute and one of TRC principal investigators. "In addition, the organizations will each benefit from sharing their expertise to advance the technology and to accelerate its systematic application in basic biomedical research and drug discovery."

The members and principal investigators will work together over the three-year period to share expertise about ways to use RNAi technology to speed biomedical research. The project also will develop efficient protocols for preparing DNA and virus stocks of the RNAi reagents and will create methods for performing high-throughput screening with the entire library.

"We are pleased to be a part of the RNAi Consortium, as it promises to be a highly important resource for the scientific research community," said Elliott Sigal, chief scientific officer and president of the Pharmaceutical Research Institute of Bristol-Myers Squibb. "We believe that the outputs of the consortium will contribute greatly to the understanding of gene function and to the development of new medicines."

"The ability to perform high-throughput screening with validated RNAi reagents will provide the ability to systematically identify the genes underlying disease process and thereby identify previously unknown targets for drug discovery," said Steven Paul, executive vice president of Lilly Research Laboratories, Eli Lilly and Company. "We’re proud to contribute to this important public cause, while being leading users of the technology ourselves."

"In order to advance pharmaceutical science, fundamental tools like RNAi need to be made available and accessible to scientists around the world. We’re delighted to help make that possible," said Mark Fishman, president of Novartis Institutes for BioMedical Research. "The RNAi Consortium is an excellent example of how industry and academia can work together."

"Sigma Aldrich is looking forward to participating in the development of these reagents and the associated methods," said Dave Julien, president of biotechnology at Sigma-Aldrich. "The TRC is consistent with our goal of enabling progress in biomedical research."

Separately, Sigma said that it plans to commercially distribute clones, purified DNA and viral stocks from TRC RNAi libraries, facilitating their use by researchers worldwide. In addition, TRC will make the clones available to other commercial and academic groups.

"We are excited by the enormous prospects of using systematic RNAi screening to help understand cell biology and disease," said Professor Michael Lai, vice president of Academia Sinica. "We are glad that the scientific community of Taiwan can participate in this unique international effort."

RNAi technology

RNAi is expected to revolutionize drug development and discovery by providing critical insights into the mechanism underlying human disease and accelerating development of medical treatments for cancer, metabolic, inflammatory, infectious, neurological and other types of diseases.

RNAi provides a means of dissecting complex biological processes by switching off genes one at a time. This approach could reveal the genes that are key to a variety of diseases, including those genes critical to a cancer cell’s survival, genes that promote resistance to HIV or genes that mediate diabetes.

Over three years, TRC will create the materials needed to conduct RNAi experiments on 15,000 human genes and 15,000 mouse genes. A total of 150,000 custom-designed plasmids that express short, unique pieces of RNA (known as short hairpin RNAs or shRNAs) that target specific genes will enable the systematic investigation of most human and mouse genes. A powerful feature of this library is that it can be efficiently transformed into a viral mode that is easily introduced into many cell lines and primary cells used in biomedical research.

Although researchers worldwide are investigating RNAi as a promising novel approach to gene therapy, TRC’s primary focus is on developing RNAi as a biomedical research tool.

Michelle Nhuch | EurekAlert!
Further information:
http://www.broad.mit.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>