Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic discovers ’new pathway’ against pancreatic cancer

15.03.2005


Pancreatic cancer kills 30,000 Americans every year. Not only is there no cure, but there are no effective treatments. That may change if a new finding by Mayo Clinic researchers continues to show promise. In the March 15 issue of the journal Cancer Research, (http://cancerres.aacrjournals.org/future/65.6.shtml) investigators describe discovering a key molecule that controls the growth, spread and survival of pancreatic cancer cells. This is a critical first step toward developing new and better treatments for patients with pancreatic cancer.



"This is a very exciting -- and surprising -- finding," says Daniel Billadeau, Ph.D., lead author of the report. To identify new target molecules with potentially therapeutic impact for a cancer for which there is currently no real useful treatment is incredibly important.

"Based on the literature, you would predict the opposite of what we found. But in fact, we determined that we can decrease a known regulator of cancer cell survival -- in effect, turn this regulator off -- and when we do, the pancreatic cancer cells undergo apoptosis (commit cell suicide) and die."


Significance of the Research

With this finding, a new path is cleared for researchers to target these key molecular players with new small molecule inhibitors to block their action, effectively turning off molecules that promote pancreatic cancer growth.

The finding may be applied to make pancreatic cells more sensitive to gemcitabine, the sole drug available for treating pancreatic cancer.

This discovery may lead to new drug development strategies for other cancers. Additional research will tell whether these same actors play a similar role in the spread of other cancer types.

The Key Finding

The Mayo Clinic researchers discovered a previously unrecognized role in pancreatic cancer for the GSK-3 Beta molecule. They determined that GSK-3 Beta is vital to pancreatic cancer cell survival and growth through its effects on a well-known gene regulator called NF Kappa B (pronounced "en-ef-kappa-bee").

The NF Kappa B protein is well known to researchers as a transcription factor that regulates many genes. In cancer cells, NF Kappa B regulates genes involved in cancer cell survival, proliferation and blood vessel formation (angiogenesis). NF Kappa B is hyperactive in many human cancers including pancreatic. The Mayo Clinic study shows that in pancreatic cancer, the activity of NF Kappa B is regulated by GSK-3 Beta. Researchers determined this by showing that if they could decrease GSK-3 Beta protein or inactivate it using small molecular inhibitors, they could likewise decrease NF Kappa B -- and deprive the pancreatic cancer cells of a means to grow and survive.

Notably, in pancreatic cancer, NF Kappa B activity is high -- which can cause resistance to chemotherapy drugs used to treat the disease. This new information suggests a potential means of treating pancreatic cancer by a two-pronged attack of administering the gemcitabine in combination with a drug to block GSK-3 Beta.

Nearly all die within five years of diagnosis

Despite recent advances in understanding how cancers work at the molecular level, pancreatic cancer lacks an effective treatment. Approximately 30,000 Americans are diagnosed with pancreatic cancer annually, and the disease kills the same number each year. Ninety percent of these cancers are pancreatic ductular adenocarcinoma, the fourth leading cause of cancer deaths in the United States. Pancreatic cancer patients have one of the poorest prognoses -- the five-year survival rate is 3 percent. Because pancreatic cancer is aggressive, spreads rapidly and few treatment options are available, researchers welcome any promising leads for improving diagnosis and therapy.

Bob Nellis | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>