DNA with three base pairs – A step towards expanding the genetic code

Scientists at The Scripps Research Institute in La Jolla, California are reporting today at the 229th national meeting of the American Chemical Society progress toward the creation of a system for replicating a modified form of DNA containing an unnatural base pair.


According to the Scripps Research scientists, this finding is a significant step towards expanding the genetic code and the ability of DNA to act as an information storage and retrieval system in the test tube and in simple, engineered organisms, such as yeast or bacteria. DNA with three or more base pairs could find broad applications in a number of fields, including biotechnology, medicine, data storage, and security.

Instead of just the canonical base pairs “G-C” or guanine–cytosine, and “A-T” or adenine–thymine, the Scripps Research scientists’ DNA has a third pairing: “3FB-3FB” between two unnatural bases called 3-fluorobenzene (or 3FB). Unlike other unnatural base pairs, DNA polymerases are able to replicate this base pair, albeit with reduced fidelity. To improve replication, the scientists also reported the development of a system capable of evolving polymerases to better recognize 3FB in DNA. Using a selection system some liken to evolution in the test tube, they are creating their own “polymerase” enzyme able to replicate the unnatural DNA.

While the polymerase does not replicate the unnatural DNA with the same fidelity observed in nature, (roughly one mistake for every 10 million bases of DNA copied), its fidelity is reasonable (typically making only one mistake for every1000 base pairs). This is the first time anyone has been able to replicate unnatural DNA with fidelity against every possible mispair.

“We definitely are still working on improvements, especially in fidelity,” says Scripps Research Assistant Professor Floyd Romesberg, who led the research. “Nevertheless, we are now able to replicate unnatural DNA.”

The American Chemical Society, the world’s largest scientific society, is holding its national meeting in San Diego, CA, from March 13 to 17. The talk on this research, entitled “Efforts to Expand the Genetic Code,” will be presented at 3:15 PM, Monday, March 14 during the Biomimetic Polymers symposium (POLY 193) at the San Diego Marriott in the Manchester rooms 1-2.

Media Contact

Jason Socrates Bardi EurekAlert!

More Information:

http://www.scripps.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors