Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Temple University researchers develop new targeted cancer therapy

15.03.2005


Temple University researchers have developed a new drug that halts cancer cell division, instigating tumor death. The drug works by interfering with the activity of a gene called Plk1 and is now in phase I clinical trials for human cancer therapy. Their research is published in the March issue of Cancer Cell.



Plk1 is one of several molecules that play a critical role in the spread of cancer. Previous studies have found higher levels of Plk1 in cancer tumors and in patients with poorer survival rates. When Plk1 activity was blocked, cancer cells could not divide and tumors could not survive.

Lead by Prem Reddy, Ph.D., professor of biochemistry and director of the Fels Institute for Cancer Research at Temple University School of Medicine, the Temple team sought out a new compound that would target and block Plk1. They developed and tested ON01910, a small molecule that inhibits Plk1 activity, on 94 different human cancers.


"We found that ON01910 was a potent inhibitor of human tumor growth and also worked well with several existing cancer drugs, often inducing complete regression of tumors. Someday it might work either as a single drug or in combination with other drugs," said Reddy.

Johns Hopkins Medicine and Mt. Sinai Medical Center are currently conducting the first clinical trial of ON01910 in patients with advanced and metastatic cancers. The studies will evaluate data from up to 56 patients.

ON01910 is known as a targeted therapy, a new area of cancer drug research and development. As the name suggests, such therapies target molecules that are critical to a tumor’s survival. Targeted therapies block the molecules from functioning, thereby preventing tumors from surviving.

On the unique actions of ON01910, Reddy said, "Our drug stops tumor cells from reaching normal cells three ways. First, it blocks invasion, next it blocks angiogenesis and finally, it induces tumor cell death. It also appears to be very safe."

Other research team members are Kiranmai Gumireddy1, M.V. Ramana Reddy, Stephen C. Cosenza1, R. Boomi Nathan, Stacey J. Baker, Nabisa Papathi1, Jiandong Jiang, and James Holland.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>