Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To control germs, scientists deploy tiny agents provocateurs

15.03.2005


Aiming to thwart persistent bacterial infections and better control group behaviors of certain microorganisms, scientists are creating artificial chemicals that infiltrate and sabotage bacterial "mobs."



Reporting the work here today (March 13) at the 229th national meeting of the American Chemical Society, University of Wisconsin-Madison chemistry professor Helen Blackwell described the ongoing construction of a new class of molecules that conduct such chemical warfare.

Targeting natural signaling mechanisms in bacterial cells, Blackwell aims to ultimately control the formation of biofilms, goo-like amalgamations of bacteria that are widespread in nature and have serious implications for agriculture and human health. Biofilms form the green slime on rocks, the plaque on human teeth and the slippery film on ship hulls. If a single cell were analogous to one man, biofilms would be the "bacterial equivalent of mob mentality," says Blackwell.


In the realm of health, biofilms are at the root of growing numbers of tenacious, and sometimes fatal, hospital infections, says Blackwell. Indeed, a U.S. National Institutes of Health study last year reported that almost 80 percent of bacterial infections are in the biofilm forma.

Biofilms can often constitute several species of bacteria and can be both harmful and beneficial. In one role, biofilms can coat plant roots and symbiotically aid ecological processes such as nitrogen fixation. But at the darker end of the scale, biofilms can form infection-inducing layers on implanted medical devices and cause deadly lung infections in cystic fibrosis patients. Biofilms have long baffled researchers because of their stupefying capacity to behave like a "super-organism" that vetoes the normal characteristics of a bacterial cell in favor of new group behaviors. "It’s amazing that such simple organisms as bacteria can form these super-colonies that work together in such sophisticated ways," says Blackwell.

Scientists have learned that bacteria sense each other and the overall density of their colony by continuously exchanging small molecules and peptides - a process known as quorum sensing. Past a certain density threshold, the colonies unite to initiate group behaviors, such as biofilm formation.

Attempting to manipulate quorum sensing in both plant and animal bacteria, Blackwell and her team are designing new compounds that mimic acylated homoserine lactones (AHLs), a natural molecule that is used by more than 50 species of bacteria to "talk." Researchers have so far studied around 15 variations of AHLs. In particular, the UW chemists are synthesizing molecules that interact with a specific class of proteins that are linked to AHLs and are critical in quorum sensing.

"We want to design molecules to confuse bacteria so they can’t sense their neighbors," says Blackwell, "but some types of quorum sensing are beneficial, so we are simultaneously searching for compounds that selectively turn on group behaviors."

Using new combinatorial chemistry techniques, Blackwell and her team are screening through hundreds of molecules at a time. The researchers have so far unveiled three promising organic compounds that seemingly quell bacterial signaling.

Helen Blackwell | EurekAlert!
Further information:
http://www.chem.wisc.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>