Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists win £800,000 to boost research into fighting viruses

15.03.2005


A team of University of Glasgow scientists have received a grant of £800,000 from the Wellcome Trust to research a mechanism that blocks a critical step in the replication cycle of retroviruses. In the long term, the research could lead to the design of new therapeutic strategies or drugs against retroviruses, which cause diseases such as AIDS and certain leukemias.



Mammals have evolved several mechanisms to fight viral infections, and insight into how humans and animals successfully limit virus spread helps to develop effective anti-viral drugs and vaccines.

The scientists are set to further investigate a mechanism that may be able to stop so-called retroviruses in their tracks. Retroviruses, during their life cycle, spread by permanently inserting their genetic material into healthy cell’s DNA.


The scientists, led by Professor Massimo Palmarini from the University of Glasgow’s Faculty of Veterinary Medicine, are investigating how some endogenous retroviruses (’benign’ retrovirusese present in the genome of all mammals) protect hosts by interfering with the infection by related disease-causing retroviruses.

The new grant will boost the study of how an ’endogenous’ retroviruses (ERV) named enJS56A1 interferes with a pathogenic ’exogenous’ retrovirus (JSRV), the cause of major infectious diseases of sheep. enJS56A1 forms viral particles that ’stick’ together and cannot exit the cell and spread to other cells. JSRV instead forms particles normally able to exit the cell.

However, when JSRV and enJS56A1 are present in the same cell only defective ’sticky particles’ are formed, effectively blocking viral infection. Understanding the mechanisms of enJS56A1-induced block can lay the foundation to develop new drugs that stop production of viruses from infected cells.

The research is set to shed light on how retroviruses evolve and will help explain late steps in the retroviral life cycle. Understanding how enJS56A1 functions could provide a model for designing new anti-retroviral therapies that work on cells already infected by retroviruses. Many current anti-retroviral drugs function only immediately after the virus infects a new cell.

Professor Palamarini, from the University of Glasgow’s Veterinary Faculty, said: ’The grant is set to develop much needed research into viral infections. We need to understand more about how retroviruses work and this work could eventually lead to new treatments to fight retroviruses.’

’Like all viruses, retroviruses insert their genetic material into host cells and then force the host to make copies of the virus. Unlike other viruses, however, retroviruses permanently insert a copy of their genes into the genome of cells they invade. Every sheep on the planet has retroviruses that are present in the genome like every other gene. In fact, all animal species - humans included - have retroviruses that are genetically inherited.’

The University of Glasgow recently recruited Professor Massimo Palmarini, a world-leading expert in viral pathogenesis and lung cancer. Most recently of the University of Georgia, USA, Professor Palmarini now leads a team of molecular cancer specialists and virologists at Glasgow and is set to continue his groundbreaking work into a virus induced type of lung cancer, the disease which led to the demise of Dolly the sheep, the world’s first cloned mammal.

His expertise spans the fields of viral pathogenesis, infectious disease and cancer. The major focus of Professor Palmarini’s research is the study of a naturally occurring contagious lung cancer of sheep, ovine pulmonary adenocarcinoma (OPA) that cannot currently be controlled, and leads to significant economic loss in the UK and beyond. Research into the mechanisms underlying this form of lung cancer could provide strategies to understand the onset and progression of human lung cancer, the leading cause of deaths in cancer patients.

Jenny Murray | alfa
Further information:
http://www.gla.ac.uk:443/newsdesk/pressreleases/stories.cfm?PRID=3216

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>