Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical molecules designed to respond to visible light that can penetrate tissue

14.03.2005


If you have ever covered a flashlight with your hand and seen the red light that still comes through, then you have seen light in the therapeutic window – that magic wavelength that is not absorbed or reflected away by tissue. Scientists believe that they can use light at that wavelength to signal manmade molecules to release drugs at disease sites in the body.



Such possibilities will be discussed in a poster and a talk by Virginia Tech researchers presenting at the 229th American Chemical Society national meeting in San Diego on March 13-17.

Researchers in Karen Brewer’s group at Virginia Tech have designed supramolecular complexes that can hold and, when signaled by light (photoinitiatied), will generate pharmaceutical compounds that can cleave DNA, such as in a tumor cell. "The challenge has been that tissue blocks light so we can’t signal molecules deep within the body to deliver drug therapy," says Brewer, associate professor of chemistry.


Matthew Mongelli of Maywood N.J., a postdoctoral associate in chemistry, and his colleagues in chemistry and biology at Virginia Tech, have been working with Theralase Technologies Inc. to design molecular systems that use light that is in the therapeutic window. Starting with a complex with known DNA cleaving qualities, they changed the light absorber unit to one that responds to the red wavelength.

"Investigations into polyazine supermolecular complexes containing Ru and Os with Rh centers that possess photoactive MMCT states: Visible light induced, oxygen independent DNA photocleavage (INOR 329)," will be presented by Mongelli during the general poster session, 7 to 9 p.m., Sunday, March 13, in Convention Center Hall D. The poster has also been selected for the Sci_Mix session 7 to 9 p.m. Monday, March 14, in the Convention Center’s Sails Pavilion.

Co-authors are Brewer; undergraduate chemistry students Matthew Jeletic of Centreville, Va. and Jerita Dubash of Ashburn, Va.; and Biology Professor Brenda S. J. Winkel, all of Virginia Tech.

Brewer will also give an oral presentation on designing photochemical molecular devices and applications in photodynamic therapy and in solar energy conversion. Because of the detail offered by Mongelli’s poster, Brewer says she will focus on the exciting potential of creating molecules to reduce water to hydrogen. The talk, "Designing photochemical molecular devices utilizing Os and Ru polyazine light absorbers and Rh and Pt reactive sites: Applications in solar energy conversion and photodynamic therapy (INOR 410)," will be presented at 4:50 p.m. Monday, March 14, in Convention Center Room 4. Co-authors are chemistry Ph.D. students Mark Elvington of Blacksburg, Va. and Ran Miao of Zhangzhou City, China, Mongelli, Dubash, Jeletic, and chemistry undergraduate Julie Heinecke of Powhatan, Va.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>