Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers report new pro-inflammatory role for anti-inflammatory enzyme

11.03.2005


Part of the immune system’s pro-inflammatory response to bacterial invasion is to increase nitric oxide levels with an enzyme called inducible nitric oxide synthase. In a study published in the Journal of Biological Chemistry, scientists report that the predominantly anti-inflammatory enzyme, endothelial nitric oxide synthase, is also involved in nitric oxide production in response to infection. This discovery may eventually provide a new target to treat sepsis, which is caused by overproduction of nitric oxide.



The research appears as the "Paper of the Week" in the March 18 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

When immune cells are exposed to pro-inflammatory cytokines or bacterial endotoxin (part of the bacterial cell wall) they start to produce inducible nitric oxide synthase (iNOS), an enzyme responsible for the manufacture of nitric oxide (NO). This results in an increase in cellular NO which contributes to inflammation and host defense.


"NO acts as a cytotoxic/cytostatic effector molecule released (predominantly) by immune cells," explains Dr. Adrian J. Hobbs of University College London. "It kills pathogens via a variety of mechanisms, mostly related to inhibition of metabolic enzymes and destruction of DNA."

However, too much NO can be a bad thing. Sustained overproduction of NO can cause septic shock (sepsis). "In sepsis, which is a systemic bacterial infection, the body expresses iNOS which generates relatively high concentrations of NO," says Dr. Hobbs. "This aids host defense by killing the invading organism, but in excessive quantities starts to lead to host-damage. In sepsis, this is manifested predominantly as a profound hypotension, inadequate tissue perfusion and organ failure. This often results in death."

Previously, Dr. Hobbs and colleagues demonstrated in vitro that endothelial nitric oxide synthase (eNOS) also plays a pro-inflammatory role by facilitating iNOS expression. "eNOS is found almost exclusively in the vascular endothelium and the NO that it synthesizes plays a key role in regulation of blood pressure, platelet aggregation, the reactivity of immune cells and growth of vascular smooth muscle cells," explains Dr. Hobbs. "iNOS is not expressed under normal physiological conditions, but is up-regulated for host-defense purposes."

Now, the researchers have validated their hypothesis in vivo using mice that do not produce eNOS. These mutant mice had a marked reduction in iNOS production in response to bacterial endotoxin, as well as lower plasma levels of NO2- and NO3- and less mortality than normal mice. The scientists also showed that endotoxin activates eNOS in macrophages and that this effect is an essential trigger for the induction of iNOS.

"eNOS has until recently been thought to act principally in an anti-inflammatory manner," notes Dr. Hobbs. "The results of our study show clearly that eNOS can also act in a pro-inflammatory manner and accelerate host-defense in response to pathogenic stimuli."

This discovery may eventually lead to new treatments for septic shock and other inflammatory diseases. "Pharmaceutical companies have been developing iNOS inhibitors to treat sepsis," explains Dr. Hobbs. "However, it now appears as if these are ineffective in reducing the mortality associated with the disease. The identification of a pro-inflammatory role for eNOS-derived NO may provide the stimulus for further research in this area and thereby identify novel targets for treatment of inflammatory diseases."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>