Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tumor-suppressor gene discovered

11.03.2005


A new tumor-suppressor gene has been discovered by a team of researchers at Penn State, which also has discovered how the gene works with another tumor suppressor to control tissue growth. The team’s genetic and biochemical studies will be published in the 11 March 2005 issue of the journal Cell. "This discovery extends our understanding of how tissue growth is controlled both during normal development and during the formation of tumors, and it raises the possibility that the function of this gene may have important implications for the understanding and treatment of human cancers," says research leader Zhi-Chun Lai, associate professor of biology, biochemistry, and molecular biology.



Lai has named the new gene "mats," an abbreviation for "Mob As Tumor Suppressor." As part of the research, Lai’s lab added a human mats gene to tumor-plagued flies known to have a genetic defect in their mats gene, then found that tumors no longer developed within this line of flies in individuals that had incorporated the human gene into their DNA. "When we introduced the human mats gene into the mutant fly’s body, we found it was able to perform the same function as a normal fly’s mats gene," Lai says.

The mats gene is thought to be present in all plants and animals, and Lai’s lab identified defective mats genes in a human skin-cancer tumor and in a mouse breast-cancer tumor. "In these tumors, we found that the mouse counterpart and the human counterpart of the mats gene were mutated. On the basis of our research, we speculate that all mats genes in animals and plants may regulate cell number and tissue growth by restricting the proliferation of cells and promoting their timely death," Lai says.


This is the first time that any gene in the large superfamily to which the mats gene belongs has been shown to play a critical role in growth inhibition.

The scientists began their research when they found one line of the Drosophila fly, a model laboratory species, which developed tumors on their bodies. Lai suspected that these flies had a naturally occurring genetic defect that caused them to develop the tumors. He used genetic-mapping techniques to study the mutant fly’s chromosomes and identified a short segment of DNA on which a mutant gene was most likely to occur. "Genetic techniques helped us to narrow our search for this fly’s mutation to a few candidate genes within a very small part of one huge chromosome," Lai explains. The scientists narrowed the tumor-causing candidates down to two genes, then performed molecular-biology experiments with them both, revealing that the defective gene is the one they now call mats.

Lai’s lab discovered that the mats gene had a mutation--an additional piece of DNA that had somehow become inserted into the molecular sequence of the gene. This mutation was a type of "transposable element" known to be able to jump to different locations along the DNA. The inserted material disrupted the gene’s function, which is to make a particular protein that works in particular ways. "A mutant gene is not going to make the protein product that the normal gene is able to make," Lai explains.

Lai then generated mutant clones of this fly and found that they developed large tumors in many organs including the head, eye, wing, leg, and antenna. He also generated another mutant form of the mats gene--this time with a huge missing pie ce of genetic material caused by another transposable element jumping out and dragging lots of material along with it. "With such a deletion of material, this gene is basically gone, so we knew it couldn’t possibly function at all," Lai says. Both kinds of mutations resulted in the formation of the same kinds of tumors. These studies indicate that the disabling of this one gene alone can cause the growth of tumors.

The researchers then did a number of experiments to study this line of flies with the clearly defective mats gene. "With transgenic techniques, we were able to introduce a normal mats gene into the chromosomes of flies whose mats gene was mutated," Lai explains. "We found that the line of flies with this additional normal mats gene no longer developed tumors.

The researchers also inserted a human mats gene into the line of mats-mutant flies and found that the human gene is able to perform the same function as the fly gene. Additional experiments also revealed that the mats gene is required for normal differentiation of eye cells during the development of the fly’s eye.

Lai’s team also tackled the tough challenge of discovering how the mats gene is able to suppress the growth of tumors. "We did not find many clues when we compared the sequence of the mats gene with the sequence of other genes in the public databases," Lai says. "But we did find a counterpart to the mats gene in yeast. This yeast counterpart is known to make a protein that forms a complex with a kinase--an enzyme that catalyzes genetic activity--so we wondered if the protein product of our mats gene also could function in this way." Lai was particularly intrigued by the possibility that the protein product of the mats gene could partner with the kinase product of a known tumor-suppressor gene named "wts," which turned out to be the case.

The researchers performed three experiments to test whether the mats and wts genes interact genetically. In the first experiment, they inserted an additional normal mats gene into a line of flies and found no change in the shape of the flys’ eyes. In the second experiment, they inserted an additional normal wts gene and found that the fly’s eyes were decreased in size and deformed. In the third experiment, they inserted both a mats gene and a wts gene. "We found that mats and wts together can shrink the fly’s eye much more dramatically," Lai reports. "Their effect is not additive, but synergistic. The two genes have a more powerful effect when they combine to work together in reducing cell proliferation and promoting cell death, so the tissues get much smaller." Lai’s lab also performed other experiments that demonstrated that the two protein products of the two genes join structurally at the molecular level to form a larger, more powerful, and more productive protein complex.

Because of its far-reaching implications, this study is expected to establish a new area of research that is likely to engage scientists working in many different fields.

Other members of Lai’s research team at Penn State include Xiaomu Wei, Takeshi Shimizu, Edward Ramos, Margaret Rohrbaugh, and Li-Lun Ho, all graduate students; Ying Li, a technician; and Nikolas Nikolaidis, a postdoctoral fellow in the laboratory of Masatoshi Nei, Evan Pugh Professor of Biology.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>