Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein delivers selenium for normal sperm development

07.03.2005


A paper to be published in the journal Biology of Reproduction offers evidence that a protein circulating in the blood of mammals delivers the dietary micronutrient selenium to germ cells, enabling these cells to develop into normal sperm.



Previously, the function of this protein, selenoprotein P, was unknown, although it was believed to play a role as an antioxidant and to transport selenium throughout the body.

Dietary selenium is essential for normal sperm development and male fertility. Selenoprotein P, or SEPP1, carries about 60 percent of the selenium in blood plasma.


To understand the physiological function of SEPP1 in the testes and epididymis of mammals, a team of scientists at Vanderbilt University in Nashville studied male mice that lack the gene to produce SEPP1. These genetically altered males have levels of selenium in the testis that are less than 10 percent of those in control mice, and they are generally infertile.

The research team, headed by Dr. Gary E. Olson, found that the mutant male mice lacking SEPP1 develop sperm with defective tails, similar to the sperm produced by unaltered male mice fed a low-selenium diet.

Furthermore, the mutant mice do not recover normal sperm production after prolonged feeding on a diet supplemented with high levels of selenium, and they remain infertile. Thus, even selenium supplements could not overcome the need for SEPP1 to facilitate normal sperm development.

These findings, according to Olson and colleagues, strongly indicate that SEPP1 is the source of the selenium needed for development of normal sperm and for male mice to maintain their fertility.

Dr. Gary E. Olson | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>