Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two chemicals boost immune cells’ ability to fight HIV without gene therapy

07.03.2005


UCLA AIDS Institute study

A UCLA AIDS Institute study has discovered that two chemical compounds may help the immune systems of HIV-infected persons fight the disease without invasive gene therapy. Presented March 5 at the 2005 Palm Springs Symposium on HIV/AIDS, the new research demonstrates that the new chemicals activate telomerase -- a protein that boosts immune cells’ ability to divide, enabling them to continue destroying HIV-infected cells.

"The immune cells that fight HIV naturally produce telomerase during the infection’s early phase, but stop once HIV becomes a chronic condition," explained Rita Effros, Ph.D., Plott Endowed Chair in Gerontology and a professor of pathology at the David Geffen School of Medicine at UCLA. "The two compounds switched telomerase back on in the cells."



In earlier research, the UCLA team showed that inserting the telomerase gene into the immune cells of an HIV-infected person prevented the cells from aging prematurely. The telomerase enabled the immune cells to divide indefinitely, stimulated their production of a viral-fighting molecule and prolonged their power to kill HIV-infected cells.

In this study, the scientists isolated immune cells from the blood of HIV-infected persons and cultured the cells with the chemical compounds. They were surprised to see that the compounds produced the same three changes in the cells as those created by the gene therapy. "Lo and behold, we discovered we didn’t need to use gene therapy to reactivate the telomerase and strengthen the immune system’s capacity to stave off HIV," said Effros, a member of the UCLA AIDS Institute. "We were thrilled to see we could create the same changes in the cells without relying on an invasive procedure."

Immune cells that battle HIV must constantly divide in order to continue performing their protective functions. The massive amount of division prematurely shortens these cells’ ends, or telomeres, ultimately exhausting the immune system.

UCLA’s previous research shows that telomerase rejuvenates the telomeres and allows the immune cells to remain youthful and active as they replicate under HIV’s attack. Drugs that activate telomerase also offer therapeutic potential for a wide spectrum of degenerative diseases and chronic conditions in which cellular aging plays a role. "I’m really excited by our findings. This progress moves us one step closer to drugs that work by switching telomerase on permanently and keeping the immune cells young and strong in their fight against infection," said Effros. "These therapies are also easier to develop than gene-therapy drugs."

The research was supported by a grant from the National Institute of Allergy and Infectious Diseases and a University of California Discovery Grant. Geron provided additional funding and the chemical compounds for use in the laboratory.

Effros’ team included doctoral student Steven Fauce; Beth Jamieson, Ph.D., assistant professor hematology-oncology; and Otto Yang, Ph.D., associate professor of infectious diseases, all from UCLA.

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>