Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research may provide ways to inhibit cancer’s ability to resist treatments

04.03.2005


Discovery gives clinicians new targets for making existing therapies more effective and developing drugs to inhibit the growth of cancers



A team of researchers at the University of Alberta in Edmonton and the Samuel Lunenfeld Research Institute in Toronto have discovered how a key enzyme involved in repairing DNA is put together and how it works--a development that opens up new therapies for making cancer cells more vulnerable to attack. The team has crystallized--or characterized in three dimensions--polynucleotide kinase (PNK), a key enzyme involved in a cell’s ability to repair single-strand and double-strand breaks in DNA.

"This gives us a clearer picture of how the enzyme works and opens up the possibility that we can develop drugs that inhibit cancer’s ability to repair itself and resist treatments," says Biochemistry professor Mark Glover, the lead author in the paper published in today’s issue of Molecular Cell.


Normally, explains Department of Oncology and Alberta Cancer Board researcher Michael Weinfeld, when a single- or double-strand break occurs, "the damaged ends need to be cleaned up before they can be rejoined" as an early step in the repair process. PNK is one of the key enzymes required to "polish" the strand break ends. Without it, cells are more sensitive to agents such as ionizing radiation or certain drugs that kill cells by damaging their DNA.

DNA, or deoxyribonucleic acid, is a large molecule shaped like a double helix found primarily in the chromosomes of the cell nucleus and contains the genetic information of the cell. Once damaged, cells have developed biochemical responses to repair the damage; when they can’t be repaired, cells die if the damage is too toxic. Or, if the damage is not lethal, mutations can occur that lead to cancer.

The paper is entitled The Molecular Architecture of the Mammalian DNA Repair Enzyme, Polynucleotide Kinase. The work builds on Dr. Weinfeld’s work on understanding DNA damage, Dr. Glover’s work on the basic biochemical processes involved in understanding breast cancer and Dr. Bernstein’s postdoctoral work.

The research was funded by the Canadian Institutes of Health Research, the National Cancer Institute of Canada and the Alberta Heritage Foundation for Medical Research. Dr. Glover is also a Canada Research Chair.

The authors on the paper include: Drs. Glover and Weinfeld, Nina Bernstein, R. Scott Williams, Melissa Rakovszky, Diana Cui, Ruth Green, Feridoun Karimi-Busheri, Rajam Mani, Sarah Galicia, C. Anne Koch, Carol Cass and Daniel Durocher (Dr. Durocher has an appointment with the Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto.)

Michael Robb | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>