Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unravelling a genetic mystery

03.03.2005


Research by a University of Nottingham expert has shed new light on a genetic mystery that has its origins millions of years ago.



A study by Dr Angus Davison has helped to uncover new facts about the most common organic compound found on earth — a substance called cellulose. Cellulose is found in large amounts in all crops and plant life, making it one of the foundations of modern farming, human diet and the global economy.There is just one problem with it: most animals are unable to directly digest it in their own stomachs, because they lack a key gene to enable them to do this.

Up until now, only a tiny number of animals have been found to possess the gene — called a cellulase gene — that allows them to do this themselves. Instead, scientists have believed for decades that most animals rely on bacteria living in their gut to break down the cellulose so it can be converted into ‘fuel’ for the body. Humans fall into this category.


But new research by Dr Davison shows that cellulase genes are far more common than previously thought. His study has identified them in many other creatures including earthworms, sea urchins, lobsters and bees.

These surprising findings could mean a radical overhaul for much current scientific thinking about the most common organic compound on earth. They also suggest that at some point in the past, the distant ancestors of modern humans were able to break down cellulose too. And at some point between then and now, we mysteriously lost the ability to do it.

Dr Davison, of the University’s Institute of Genetics, said: ‘We found that not only are cellulases common and widespread in animals, but they can also be traced back to the last common ancestor of all animals — including Homo sapiens — more than 600 million years ago. "So in fact cellulases are not rare at all — and they have not been acquired from bacteria."

Dr Davison searched the genetic data on hundreds of species, in the search of cellulase genes. He then traced the evolutionary history of those creatures to show that the genes must have originally evolved in one of the earliest animal species.

The study, carried out jointly with Dr Mark Blaxter at the University of Edinburgh, is published online in the journal Molecular Biology and Evolution.

Dr Angus Davison | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>