Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule important in cell construction also critical in learning and memory

02.03.2005


A family of proteins that help build the cytoskeleton, or the bones of the cell, also play an important role in learning and memory, according to a study published this month in The Journal of Neuroscience.



Marina Picciotto, associate professor of psychiatry, pharmacology and neurobiology at Yale School of Medicine, and the senior author of the study, studied mice missing one of these proteins--â-adducin--and found the cytoskeleton developed normally. However, the mice were impaired during fear conditioning and memory exercises. "We were hoping to find a mechanism that cells use to make short term changes in nerve cell communication permanent, but we were surprised that losing â-adducin made such a big change in both the nerve cell communication and in behavioral measures of memory," Picciotto said.

The focus of the study is long-term potentiation, which is a form of neuronal plasticity and may form the biological basis for some kinds of memory. Long-term potentiation refers to the fact that if two neurons in the hippocampus are active at the same time, the connection between them can be strengthened. This change, or potentiation, can last for hours to days. This may serve to lay a foundation for more permanent changes, such as the construction of new connections, or synapses, between the neurons. "If you learn to do something new, your neurons have to adapt and change to create a stronger, more direct pathway between neurons," Picciotto said. "The protein â-adducin appears to be important for making those new connections."


In this study, the mice that did not have the protein were not able to strengthen a synapse in the hippocampus, which is the area of the brain that enables us to remember people, places and things. "If the mice don’t have â-adducin, they can’t make a new map," Picciotto said. "It’s not enough to just have the electrical properties, the skeleton is very important in making long-lasting changes between nerve cells that result in learning."

Jacqueline Weaver | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>