Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New binding target for oncogenic viral protein

28.02.2005


The DNA tumor virus simian virus 40 produces the Large T antigen which inactivates two of the cell’s most important cancer-preventing proteins, p53 and pRb. In a study published in the Journal of Biological Chemistry, researchers at the Fred Hutchinson Cancer Research Center report the discovery of an additional target for T antigen--a protein called Fbw7.



The Fbw7 gene is located in a chromosomal region that is deleted in up to 30% of human tumors. "Fbw7 is itself an important tumor suppressor which makes it an attractive choice for inactivation by Large T," explained Dr. Markus Welcker, the study’s first author.

The research appears as the "Paper of the Week" in the March 4 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.


DNA tumor viruses proliferate by hijacking their host cell’s DNA replication machinery. In order to do this, they have evolved mechanisms to override normal cellular replication controls. Simian virus 40 (SV40) accomplishes this task by producing the highly oncogenic large T antigen. This protein corrupts the cellular checkpoint mechanisms that guard cell division and the transcription, replication and repair of DNA. T antigen also inactivates some of the most important proteins that protect cells against malignant transformation, including tumor suppressor proteins p53 and pRb.

In the Journal of Biological Chemistry paper, Dr. Welcker and Dr. Bruce Clurman report that T antigen also binds to another tumor suppressor, Fbw7. This protein is part of a ubiquitin ligase complex that adds ubiquitin to proteins to mark them for destruction by the cell. Fbw7 recognizes a destruction signal on certain proteins that need to be degraded and brings them in close proximity to the enzymes that attach ubiquitin. The proteins recognized by Fbw7 play key roles in cell division, cell growth, differentiation, and cell death. "These proteins are also some of the most broadly acting cellular oncogenes, and include cyclin E, c-Myc, Notch, and c-Jun," noted Dr. Clurman. "When Fbw7 is mutated in cancers, deregulation of these oncogenic Fbw7 targets is thought to contribute to cancer. SV40 T antigen contains a motif that mimics the destruction signal found in these proteins." However, unlike the other substrates recognized by Fbw7, T antigen is not destroyed by the cell.

Drs. Clurman and Welcker suspect that by acting as a decoy and binding to Fbw7, T antigen protects cellular Fbw7 targets that facilitate viral replication and tumorigenesis. "I think this work underlines the importance of Fbw7 as an emerging tumor suppressor and the consequences of its loss in tumors," Dr. Welcker emphasized.

"The study of DNA tumors viruses has been an extremely important tool in understanding the cellular pathways that regulate cell division and are disrupted in cancer. Understanding the mechanisms through which these viruses interact with the cellular machinery that regulates cell division may lead to new insights into the pathways that cause cancer. This is an important step to designing new cancer treatment strategies that target these pathways," concluded Dr. Clurman.

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>