Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants, animals share molecular growth mechanisms

24.02.2005


Malfunctioning genes that affect plant growth and development cause distortion in tiny hairs, called trichomes, that are found on most cells. Compared with normal plants, the trichome branch lengths are shorter and slightly twisted, and the base of the trichome is abnormally elongated and swollen. (Photo courtesy of Dan Szymanski)


A newly discovered plant protein complex that apparently switches on plants’ growth machinery, has opened a scientific toolbox to learn about both plant and animal development, according Purdue University scientists.

The protein complex triggers communication between molecules along a pathway that leads to the creation of long protein strings, called actin filaments, that are necessary for cellular growth, said Dan Szymanski, agronomy associate professor and lead author of the study. Knowledge of the biochemical reactions involved in this process eventually may allow researchers to design plants better able to protect themselves from insects and disease. "These genes and their proteins are required for normal development and for normal cell-to-cell adhesion," Szymanski said. "They affect the growth of the whole plant and also the shape and size of types of cells in the plant." Results of the study are published in the February issue of the journal The Plant Cell. "Perhaps by learning about this pathway for actin filament formation, we can engineer plant cells to grow in different ways or alter how cells respond to external stimuli so they can defend themselves against insect or fungal attacks," Szymanski said.

A protein complex known as Actin Related Protein 2/3 (ARP2/3) is a cellular machine that controls formation of actin filaments, which are important for cell growth and movement. Actin filaments organize the inside of the cell and allow it to grow, and they determine where certain structures in a cell are positioned and how plants respond to gravity and light. Szymanski’s team used a deformed version of a common research plant, Arabidopsis thaliana, and specifically looked at small, hairlike structures that exist on most cells. They found that the shape and size of these hairs, or trichomes, readily show when genes affecting actin filaments are askew and causing altered growth. The researchers previously had learned that a large protein complex, known as WAVE, activated ARP2/3, but they didn’t know specifically which WAVE protein was the actual switch. Their latest research showed that a WAVE protein they’ve dubbed DISTORTED3 (DIS3) turns on APR 2/3, which in turn triggers formation of new, growing actin filaments.



Because some genes have survived through time as multicellular life evolved, they have been conserved in both plants and animals, Szymanski said. So, some of the plant proteins that comprise the ARP2/3 and the WAVE complexes are interchangeable with proteins in animals. Others proteins are not interchangeable, and Szymanski’s research team is delving into how this affects the growth process. "DIS3 has two ends that are common in both plant and animal proteins," he said. "But DIS3 has a very large segment in the middle that is specific to plants. We’d like to know if this section is important and whether it regulates DIS3 or the whole WAVE complex." For growth and development biochemical processes to proceed normally, activators such as ARP 2/3 are needed to trigger actin filaments’ formation and growth, Szymanski said. However, scientists don’t know the specific function of certain actin filaments. The molecular tools Szymanski’s research team developed will help scientists learn more about these functions in both plants and animals.

The other researchers on this study were Dipanwita Basu and Salah El-Din El-Essal, research assistants; postdoctoral students Jie Le, Chunhua Zhang and Gregore Koliantz; Eileen Malley, laboratory manager, all of the Department of Agronomy; and Shanjin Huang, postdoctoral student, and Christopher Staiger, professor, both of the Department of Biological Sciences. Staiger and Szymanski also are members of the Purdue Motility Group.

The Energy Biosciences Division of the Department of Energy, the USDA National Research Initiative and the Purdue Agricultural Research Program provided funding for this research.

Susan A. Steeves | EurekAlert!
Further information:
http://www.plantcell.org
http://www.purdue.edu

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Sustainable energy supply in developing and emerging countries: What are the needs?

21.11.2018 | Power and Electrical Engineering

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>