Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly-discovered class of genes determines - and restricts - stem cell fate

24.02.2005


Research on adult stem cells found in the skin hints at a new class of genes, according to a study from investigators at the University of Pennsylvania School of Medicine. These genes – dubbed pangenes – can both govern a stem cell’s fate and put a hold on future differentiation until the time is right. Understanding the molecular control of these genes has implications for therapies that involve tissue regeneration. The researchers found that Pax3, a gene critical in embryonic development of melanocytes – cells that make and store the pigments in the skin and hair – is also expressed in adult stem cells in the skin.

"Our findings told us that a recapitulation of an embryonic program is occurring in resident stem cells in adult skin," explains Jon Epstein, MD, Professor of Medicine, Cardiovascular Division. "These few rare stem cells were expressing genes that previously had only been known to be expressed in a developing embryo. That was the first clue that we were on to something new." Epstein and colleagues report their findings in the February 24th issue of Nature.

The scientists found that Pax3 plays dual – and somewhat seemingly contradictory – roles in adult stem cells: it directs them to become melanocytes, but simultaneously prevents them from differentiating completely. "It gets the show going, but at the same time, prevents the final act," says Epstein. "I call this dual function a "biological capacitor," because Pax3 tells the cell: Get ready to go, but at the same time won’t let it proceed."



Pangenes Express Behavioral Qualities of Pan and Peter Pan

Epstein notes that this research is conceptually new since he suggests that a single gene can both tell a cell what it should become and restrict its fate by preventing differentiation. The ability of a single biochemical factor or complex of factors to have this dual role may represent a new general paradigm for developmental and stem-cell biology. "My idea is that this is a new family of genes--they can both determine the cell type, but also put the breaks on differentiation," says Epstein. "We have named them pangenes, after the Greek god Pan and Peter Pan, who were able to orchestrate complex events while never growing old."

Epstein thinks that this concept may also be important for understanding the cell of origin for a number of tumors. Pax3 is known to be involved in some tumors, which adds evidence to the stem-cell origin for some cancers. This theory proposes that many cancers may arise from normally scarce resident stem cells that grow uncontrollably, rather than from the vast majority of differentiated cells that make up organs where cancers are found. If this theory is correct, resident stem cells in the skin could be the cells that turn into skin cancers like melanoma. Understanding stem cell biology may therefore be important for developing new therapies for cancer.

Adult resident stem cells have been identified in many types of organs and may be a potential reservoir for tissue regeneration. A fundamental understanding of the molecular programs that regulate stem-cell differentiation is necessary for harnessing this potential.

Ed Federico | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>