Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Termites feed through good vibrations

23.02.2005


Discovery that termites use vibrations to choose the wood they eat may provide opportunities to new methods of reducing infestations in homes and also may provide insights into the "cocktail party effect" of signal processing - how to ignore most noise but have some signals that trigger attention - that may prove useful in artificial intelligence.




CSIRO entomologist Theo Evans says laboratory experiments have found that termites use their ability to detect vibrations to determine which food source is most suitable. The termites can also detect how the vibrations are made. This ability could be likened to a form of sonar.

Dr Evans says different termite species are known to prefer eating particular sizes of wood; certain drywood termites prefer small blocks, presumably to avoid competition. With Professor Joseph Lai and his students from the University of New South Wales at the Australian Defence Force, Dr Evans investigated how the blind insects measured pieces of wood.


They recorded the vibrations of worker drywood termites as they fed on large and small wood blocks. Dr Evans then broadcast the recorded vibrations made by termites from the large blocks into small blocks and found that the termites switched their preference to the large blocks. Prof Lai created an artificial signal similar to that made by the termites chewing the large block, which Dr Evans broadcast into small blocks and the scientists found that the termites had no preference for either large or small blocks. Broadcasting static into small blocks did not affect termite choice, showing that the termites were not interested in random noise.

These results show two responses by the termites: one to block size and a second to signal source. The artificial signal mimicked the characteristic frequency of the wooden block, so the termites were tricked into believing that a small block with the artificial signal was the same size as a large block; thus no preference was observed. However, the signal from the termites feeding on large blocks had this characteristic frequency plus other signals indicating the presence of other termites in that "large block", so they chose to feed on the large block without termites. Thus the termites showed that they have the "cocktail party effect".

This social information had another important effect: limiting reproduction potential. Most termite workers are sterile; they don’t breed. However, in drywood termites, workers can become fertile and develop into breeders when they are isolated from their colony. Few workers developed into breeders in the experiments when they were broadcast the termite sourced signals, whereas many workers developed into breeders when artificial signals were broadcast, or when no signals were broadcast.

Scientists are hoping to find ways to interfere with the termites’ ability to select wood in order to reduce the economic impact of termite damage. "There is a common perception that termites are voracious and indiscriminate eaters, consuming all the wood that they find", Dr Evans says. "But the reality is that termites are selective feeders and choose their food very carefully. The palatability of the wood species and hardness is important as are defensive chemicals made by the plant. But our work shows that this is not the only method of assessment. There are many accounts of termites not consuming a piece of palatable wood."

Listen to termites walking and chewing pine http://www.csiro.au/audio/termite_Feb05.mp3 [mp3 file, 1 Mb, 59 sec]

Termite pictures:

http://www.scienceimage.csiro.au/index.cfm?event=site.image.detail&id=2583

http://www.scienceimage.csiro.au/index.cfm?event=site.image.detail&id=2584

Further Information:

Dr Theo Evans, CSIRO Entomology, Termite Group 02 6246 4195

Professor Joseph Lai 02 6268 8272

Media Assistance:

Julie Carter, CSIRO Entomology 02 6246 4040 or 0439 033 011

Geraldine Capp | CSIRO - News
Further information:
http://www.csiro.au

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>