Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into how the oncogenic protein c-Myc regulates cell growth

22.02.2005


New findings by Swedish and German scientists on the regulation of cellular growth are published in the March issue of Nature Cell Biology.



A greatly increased synthesis of new proteins is one of the first and most important events that occur in both normal and tumour cells upon growth stimulation.

The new proteins are formed in the part of the cell known as the ribosome. Assembly of ribosomes requires coordinated activation of genes that is mainly performed by two enzymes, RNA polymerase I and II. These two enzymes are directed by “activators” to the genes that they are to activate.


One such activator is the c-Myc protein, already known to activate the genes involved in cell growth via RNA polymerase II. In many cancers the activity of c-Myc is abnormally high. Scientists have previously believed that different types of activator direct the RNA polymerase I and II enzymes to their respective target genes.

Now, however, researchers at Södertörn University College, Karolinska Institutet, the Swedish University of Agricultural Sciences and the German Cancer Research Centre in Heidelberg reveal that c-Myc also activates genes for ribosome components via RNA polymerase I.

The discovery that c-Myc activates both RNA polymerase I and II can explain how all the various components of the ribosome are produced in the correct relative amounts and at the right time. As disruption of this balance can elicit tumour development, this discovery gives new and important insights into how abnormal c-Myc activity can cause cancer.

Ulla Bredberg-Raden | alfa
Further information:
http://www.ki.se

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>