Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Foiling fugitive fish

21.02.2005


A leading Canadian fish farming scientist is stirring the scientific waters by arguing that it may be safer to risk introducing exotic salmon into a marine ecosystem than to farm native ones there.

"The biggest environmental danger we face from salmon escapes is when farming species within their native range, such as Atlantic salmon in the Atlantic Ocean," says Dr. Ian Fleming, Director of the Ocean Sciences Centre at Memorial University of Newfoundland.

He is presenting the results of his latest research on the risks of fugitive farmed fish at the 2005 meeting of the American Association for the Advancement of Science in Washington D.C. on February 18. The work was supported by Science and Engineering Research Canada (NSERC).



Fish raised in large ocean pens have genetic traits that make them distinct from their wild counterparts. This has led critics of the fish farming industry to argue that farmed fish that break free – a common occurrence – might breed with native ones, perhaps compromising the health of the entire species and threatening its ability to survive in its natural setting.

Dr. Fleming says the key to avoiding this real ecological danger is to break what is normally considered a biological taboo: deliberately introducing a new species into an ecosystem. "The real issue is a fascinating one – it’s to analyze if it is actually better to be farming Atlantic salmon on the West Coast rather than farming Pacific salmon there," says Dr. Fleming. "That might be considered a heretical idea, in the sense that we would be introducing an exotic species into the Pacific, and all our knowledge of invasive species suggests that we shouldn’t do that. But with salmonids, particularly Atlantic salmon, there are indications that that might not be such a bad idea."

Atlantic and Pacific salmon do not interbreed successfully. If escapees find themselves on the opposite coast, this substantially reduces the likelihood that they will ecologically overwhelm local salmon populations.

With the rapid growth of ocean fish farming along the world’s coastlines, and a general desire to limit the ecological impact of this activity, Dr. Fleming says there’s presently more scientific and public interest in finding solutions, whatever they might be.

"There’s more of a consensus on trying to work toward solutions rather than arguing over whether there is a problem or not," explains Dr. Fleming. "Making fish farming more sustainable is certainly in everyone’s better interests."

Dr. Fleming himself is a transplant from the West Coast. He was previously an Associate Professor at the Coastal Marine Experiment Station and Department of Fisheries and Wildlife at Oregon State University, before moving to the Ocean Sciences Centre in the summer of 2004.

His interest in fish farming started 15 years ago when he began doctoral work on fish evolution. "I thought of hatcheries as an experiment that’s being done for me," says Dr. Fleming, who spent a decade studying such facilities in Norway. That country has the largest salmon farming industry in the world.

The Ocean Sciences Centre at Memorial University of Newfoundland is a key North American venue for fish farming research, with 11 full-time faculty members, along with a similar number of adjunct and cross-appointed professors, and dozens of graduate students

Dr. Ian Flemming | EurekAlert!
Further information:
http://www.mun.ca
http://www.nserc-crsng.gc.ca

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>