Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worms, slugs inspire robotic devices

18.02.2005


Drawing on an understanding of how slugs, leeches and earthworms traverse their environments and grasp objects, a team of Case Western Reserve University biologists and engineers has developed two flexible robotic devices that could make invasive medical procedures such as colonoscopies safer for patients and easier for doctors to administer.



The researchers from Case’s departments of biology, mechanical and aerospace engineering and electrical engineering and computer science have obtained a patent for a new endoscopic device and a provisional patent for a gripping device that may have industrial as well as medical uses. "We have taken our understanding of biology to use it as an inspiration for novel robotic devices," said Hillel Chiel, Case professor of biology and principal investigator on the project. "By taking nature seriously, we have created novel, flexible and adaptive devices that will be useful for a variety of applications."

The endoscopic device, constructed of three muscle-like actuators made of latex bladders and surrounded by nylon mesh, looks like a nine-inch long hollow worm. The actuator segments, inflating and contracting in sequence, propel the device forward, mimicking the undulating movement of slugs and worms. "This device can literally worm its way into complicated places or into curving tubing such as the colon," Chiel explained.


The current prototype can be added to existing medical endoscopes. Eventually, the device may be miniaturized and equipped with sensors that enable it to work autonomously and self propelling. According to Chiel, the research team will also be working to make the device more flexible, imitating the reflex responses of slugs and worms to changes in their environment. As a result of these refinements, the new device could reduce discomfort and the risk of injury among patients undergoing invasive medical tests, and thereby increase compliance with doctors’ orders to have such tests performed.

The second device, a biologically inspired "gripper," mimics the way hungry California sea slugs in Chiel’s lab grasp seaweed in its many highly slippery forms. The prototype consists of a four-inch, ball-like device, surrounded by muscle-like actuators in the form of tubes or rings. One of these tubes contains a mouth that opens and closes. The ball pushes forward, opens its mouth and grasps at the object before it.

This device could meet an industrial need for grippers that can pick up soft objects without destroying them. Building grippers to pick up soft materials has been very hard," Chiel explained. "Most gripper devices are fairly rigid and designed to work effectively with things that have a fixed orientation or a certain texture or toughness."

Chiel also noted that if the gripping device were miniaturized and equipped with sensors, it could have medical applications as well. Such a device, for example, might eat its way through occluded blood vessels.

Animal behavior and robots

For nearly two decades and with support from the National Science Foundation, Chiel has studied the detailed movements of soft-tissue animals like the California sea slug, chronicling their behavior on film and with MRI imaging..

"My focus has been basic science," Chiel explained. "If we can understand how nature controls adaptive behavior through its neural and biomechanical mechanisms, it will have spinoffs in novel devices. But it will also help us understand behavior in more complicated systems like human beings."

Taking Chiel’s findings about animal motion, Roger Quinn, director of the Biorobotics Laboratory in the engineering school, and Randy Beer, Case professor of electrical engineering and computer science, designed the robotic devices. Elizabeth Mangan, a graduate student in mechanical engineering, built them. A second graduate student in mechanical engineering, Gregory Sutton, also contributed to the "Gripper" project.

The two new devices join other inventions--including several generations of insect-like robots that imitate cockroach behavior--created by researchers from the College of Arts and Sciences and the Case School of Engineering.

Susan Griffith | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht Progress in Super-Resolution Microscopy
17.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>