Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme shown to help protect genomic stability

18.02.2005


Findings may provide insights into aging and cancer

Genomes throughout the animal kingdom and beyond are characterized by extensive segments that are inactive, lengthy stretches of DNA containing multiple genes that are closed to gene transcription. Scientists believe one reason for this broad gene silencing is the vital need for genomic stability, for protection against unwanted recombinations of genetic material or other disruptions of the genome’s integrity.

Genomic instability, particularly in the regions at the ends of the chromosomes known as telomeres, has been linked to aging in humans and an elevated risk for aging-related diseases, the most prominent of which is cancer. For this reason, insights into the mechanisms of gene silencing could provide important guideposts for new approaches to retarding aging or treating cancer.



Now, an investigation led by researchers at The Wistar Institute has shown that an enzyme known as Ubp10 plays a vital role in protecting the telomeric regions of the genome from potential destabilizing molecular events. The enzyme helps to keep the genome structurally closed, unavailable for transcription and possibly protected from dangerous genetic recombinations with other regions of the genome. A report on the research, which was conducted in yeast, appears in the February 18 issue of Molecular Cell.

"There are regions of the genome that have to be inaccessible," says Shelley L. Berger, Ph.D., the Hilary Koprowski Professor in the gene expression and regulation program at Wistar and senior author on the study. "Otherwise, they can recombine with themselves or with other DNA segments. In the telomeres, such events may accelerate aging or trigger cancer in humans."

"We have identified a molecular mechanism to explain how this enzyme helps keep telomeric DNA silenced and potentially protects the genome from destabilizing activity," says N.C. Tolga Emre, a graduate student in Berger’s laboratory and lead author on the study.

The Ubp10 enzyme acts on histones, molecules that have attracted increasing attention from scientists as they move beyond sequencing the human genome to trying to better understand how DNA is managed and its activity regulated. Histones are small proteins around which DNA is coiled to create structures called nucleosomes. Compact strings of nucleosomes, then, form into chromatin, the substructure of chromosomes. In many cases, when the DNA is tightly wrapped around the histones, the genes cannot be accessed and their expression is repressed. When the coils of DNA around the histones are loosened or the histone molecules are altered, the genes become available for expression.

It is the complex activity governing this process to which Ubp10 contributes. Enzymatic modifications to histones control DNA activation or silencing through the addition or removal of acetyl, methyl, and ubiquitin molecules in prescribed sequences and patterns. One job of Ubp10, as identified in this study, is to remove ubiquitin from certain histones where ubiquitin is associated with gene activation and to maintain low levels of the ubiquitin molecule at those sites.

Interestingly, Ubp10 appears to work similarly and in concert with another enzyme called Sir2, which removes acetyl molecules from histones. Sir2 has also been associated with promoting genomic stability, and some studies have linked it intriguingly to the aging process. Some studies, for example, have suggested that low-calorie diets that extend life also boost Sir2 activity dramatically.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Life Sciences:

nachricht Scientists coax proteins to form synthetic structures with method that mimics nature
15.01.2019 | University of Texas at Austin

nachricht DNA library of apoid wasps published
15.01.2019 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019 | Life Sciences

Next generation photonic memory devices are light-written, ultrafast and energy efficient

15.01.2019 | Information Technology

Viennese scientists develop promising new type of polymers

15.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>