Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Critical role in programmed cell death identified

17.02.2005


Dartmouth Medical School geneticists have found links in the cell death machinery of worms and mammals, opening new avenues for studying and targeting a process vital to development and implicated in cancer and autoimmune diseases.



The work, reported in the February 17 issue of Nature, demonstrates the role of mitochondria, the cellular power plant, in prompting worm cells to self destruct. These results unify cell death models along the evolutionary spectrum, from simple animal systems to humans. In spite of its name, programmed cell death, or apoptosis, is essential for life; it’s needed for nervous system development and it keeps the body up and running. Miscues and failures are instrumental in cancer, autoimmune disorders or neurodegenerative diseases.

Mitochondria, the organelles responsible for producing energy to fuel cell processes, also appear to release molecules that set the cell death program in motion. While their activity in mammalian cell death was known, mitochondrial involvement in worms had not previously been shown.


The new work, led by Dr. Barbara Conradt, assistant professor of genetics at Dartmouth Medical School, reveals the importance of mitochondria in cell death in the roundworm C. elegans, enhancing the view of how cell death is conserved from worms to humans. "Now it seems that there is really one way of killing cells and it involves these mitochondria. Using genetics, we could rigorously show that mitochondria are part of it. It unifies two different hypothesis and makes worms a great model to analyze how cell death is induced, " Conradt said.

Mitochondria are dynamic structures, constantly changing shape, budding and fusing. In cells instructed to die, the mitochondria tend to become smaller or fragment, but whether this fragmentation is a requirement for cell death or a byproduct has been unclear, until now. Conradt and her colleagues determined that mitochondrial fragmentation is required for cells to die and that the process that commits cells to the point of no return happens quickly. Conradt said it’s the clearest confirmation yet that mitochondrial fragmentation is critical in killing cells.

C. elegans worms are a convenient model system, Conradt explained, with a well documented cell lineage that facilitates genetic manipulation. Their cell death machinery is simple, with one component for each of the different factors involved in the central cell killing apparatus. Mammals on the other hand have multiple components or families of proteins for these factors; moreover, their cell death is more sporadic and harder to pinpoint.

In worms, scientists know exactly which cells are dying, and when and where. During development, 1,090 cells form, but 131 of these cells die; the same cells always die at the same time and at the same place. This feature makes it possible to identify mutant worms, in which cells that should have died instead live. Worms whose cell death program is blocked survive, at least in the lab, with their 131 extra cells. Such studies are impractical in mammals because cell death is essential and animals with a cell death defect die.

The researchers demonstrated that when they cause worm mitochondria to fragment without instructing cells to die, the cells still die and when they block fragmentation, the cells survive; in other words, blocking fragmentation prevents cell death, inducing fragmentation provokes cell death. "This programmed cell death is so important and the more players we know that are involved, the more potential targets we have for therapeutics," Conradt said. During development, for example, many neurons are built, but after birth, more than half are eliminated in the central nervous system in mammals: "It’s a common safeguard, to ensure that neurons talk to the right neighbors and make the right connections." Also, if cells do not die on schedule, unregulated growth can lead to tumors and other complications.

"Mammalian studies that have implicated mitochondrial fragmentation in cell death have been done under rather artificial conditions, in tissue culture, not using natural cell death stimuli, " Conradt explains. "Our work was done in vivo; in the worm. We looked at cells that normally die, so it’s more solid."

Hali Wickner | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>