Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes’ link to obesity broken in mice

16.02.2005


Scientists at Washington University School of Medicine in St. Louis used genetically modified mice to uncover a potentially important link between diabetes and obesity.



By genetically altering production of a factor found in skeletal muscle, scientists produced mice that can’t get fat but do develop early signs of diabetes. Reversing the alteration produced mice that can become obese but do not develop diabetes. The findings provide important insights for scientists struggling to find new ways to cope with the unprecedented epidemic of obesity now spreading through the United States and other nations. Obesity brings with it a range of health consequences including sharply increased risk of type 2 diabetes, the most common form of diabetes.

Scientists broke the link to improve their understanding of the network of factors that lead from obesity to the onset of diabetes. Based on what they learned, they applied a drug treatment in their new transgenic mice and in a different, previously established mouse line that suffers from obesity and a diabetes-like condition. In both groups, the drug increased insulin sensitivity, which is a primary goal of diabetes treatment. "These results confirm that the links between obesity and diabetes show great promise as targets for new therapies that act as ’metabolic modulators’ in muscle," says senior author Daniel P. Kelly, M.D., professor of medicine, of pediatrics and of molecular biology and pharmacology.


The study appears in the February 2005 issue of Cell Metabolism. It reveals new details of the activities of the peroxisome proliferator-activated receptors (PPARs), a family of receptors that affects the way cells respond to energy resources.

Diabetes disrupts the body’s ability to manage energy resources including both fat and sugar. Insulin is a primary regulator of these resources. When the intake of calories exceeds the ability of the body to store them, insulin does not work as well, leading to an increase in blood sugar levels. The work by Kelly’s group shows that this problem starts by diversion of fats to muscle, triggering an abnormal activation of PPAR. PPAR in turn sends signals to the cells to stop responding to insulin, resulting in hazardously high blood sugar levels.

Kelly’s research group had previously shown that a member of the PPAR family, PPAR-alpha, was unusually active in heart and skeletal muscle of diabetic mice. PPAR-alpha normally becomes active in response to fats. It "revs up" the machinery cells use to make energy from fat, according to Kelly. "It’s an adaptive response that helps the cell deal with all the fat that’s coming in, but our notion was that it might also play a role in the development of diabetes," he explains. "We thought PPAR-alpha might also be telling cells, look, we have all this fat coming in, so we’re not going to need glucose to make energy, so let’s shut down glucose burning. And that’s exactly what happens in diabetes."

To test their ideas, Kelly and lead author Brian N. Finck, Ph.D., research instructor in medicine, engineered a line of mice with extra PPAR-alpha in their skeletal muscle. They found the mice’s skeletal muscle cells could "chew up" fat at remarkable speeds, preventing obesity even when the mice were fed a high-fat diet. Although they were lean, the mice were also "on their way to becoming diabetic," according to Kelly. Insulin resistance and glucose intolerance -- two key harbingers of diabetes -- increased in the mice. Kelly’s group traced the glucose intolerance to PPAR-alpha’s ability to shut down genes involved in glucose uptake and use. When Kelly’s lab tested a line of mice where PPAR-alpha had been genetically knocked out, they found the reverse was true. The mice could get just as obese as normal mice on a high-fat diet, but they did not develop early signs of diabetes.

Based on what they learned about PPAR-alpha’s effects, scientists gave a drug that inhibited an important enzyme in the processes that let muscle cells make energy from fat. PPAR-alpha normally activates this enzyme as part of its efforts to accelerate fat metabolism, and blocking it essentially tricked the cell into thinking that PPAR-alpha was no longer activated. Insulin sensitivity increased as a result.

To follow up, Kelly’s lab is attempting to rescue the new mouse line from glucose intolerance and insulin resistance. PPAR-alpha seems to convince cells that they don’t need glucose because they have plenty of energy available from fat, so Kelly will try to increase energy demand or trick cells into thinking they have less energy available. "One obvious experiment is to exercise the animals, increasing their muscle energy requirements to see if we can make them more insulin sensitive," Kelly says. "Another option is to develop ways to decrease the cellular accumulation of a compound known as ATP, which is the key product of cellular energy-making processes."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>