Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists document complex genomic events leading to the birth of new genes

14.02.2005


A team of scientists led by Peer Bork, Ph.D., Senior Bioinformatics Scientist at the European Molecular Biology Laboratory, report today in the journal Genome Research that they have identified a new primate-specific gene family that spans about 10% of human chromosome 2. Comprised of eight family members, the RGP gene cluster may help to explain what sets apart humans and other primates from the rest of the animal kingdom.



Human chromosome 2 has always intrigued primate biologists; it formed from the fusion of two mid-sized ape chromosomes and is the only cytogenetic distinction separating humans from apes. At the molecular level, however, the differences among the species are much more complex.

Bork’s team systematically searched the complete genomic sequences from a broad range of taxa (mouse, rat, roundworm, fruit fly, mosquito, and pufferfish) for single-copy genes that had evolved more than one copy in humans. "Gene duplication is known to play a leading role in evolution for the creation of new genes," explained Francesca Ciccarelli, Ph.D., lead author on the study. The key to this, however, is that the duplicated copies of genes very quickly evolve functions that are significantly different than those of their progenitors.


Natural selection acts on gene duplications, most often by deleting them from the gene pool or by degrading them into non-functional pseudogenes. This is because fully functional duplicated genes, in combination with the corresponding parent gene, produce abnormally abundant quantities of transcripts. This overexpression often alters the fragile molecular balance of gene products on a cellular level, ultimately resulting in deleterious phenotypic consequences. If these duplicated genes acquire new functions, however, they may confer a selective advantage to an organism, leading to the rise of lineage-specific genes over evolutionary time.

Bork’s team identified a total of 22 genes with more than one copy in humans but only a single copy in all other species tested. They then turned their attention to the gene that exhibited the most dramatic of these duplications: RanBP2. RanBP2 is the largest protein found at the nuclear pore complex, helping to regulate nucleic acid and protein traffic in and out of the nucleus. The corresponding gene is present in all sequenced animal genomes but not in other eukaryotes, such as plants or fungi.

The new gene family characterized by Dr. Bork and his colleagues was largely derived from RanPB2, but it had also acquired a domain from the neighboring GCC2 gene, whose protein product contains a GRIP domain that localizes intracellularly to the trans-Golgi network. The new gene family, spanning approximately 10% of human chromosome 2, was named RGP (for RanBP2-like, GRIP domain-containing proteins).

By analyzing the gene order around the RanBP2 and GCC2 genes, Bork’s team was able to reconstruct the genomic rearrangements leading to the formation of the ancestral RGP locus. These events included a combination of duplication, inversion, partial deletion, and domain acquisition, and this was followed by a series of duplications that gave rise to each RGP family member. A total of eight RGP-family genes were identified, all of which are believed to be fully functional.

To demonstrate that RGP-family genes have functions that are significantly divergent from those of RanBP2, Bork and his co-workers examined the subcellular localization of one of the RGP-family isoforms. In contrast to RanBP2, which is found exclusively at the nuclear envelope, this RGP-family protein was detected in discrete cytoplasmic locations, thereby confirming its functional divergence from RanBP2.

Identifying and characterizing genes that are responsible for primate or human distinctiveness has been a major challenge to scientists. However, this work by Bork and his colleagues should further enable studies focused on the molecular basis for species specificity. "A thorough functional characterization of the other 21 new genes we’ve identified in this study would reveal the functionally most relevant areas for primate evolution," Bork says.

Maria A. Smit | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

nachricht Tiny Helpers that Clean Cells
14.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

Tiny Helpers that Clean Cells

14.08.2018 | Life Sciences

Algorithm provides early warning system for tracking groundwater contamination

14.08.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>