Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time to rewrite the species rulebook

09.02.2005


From person to piranha to petunia, it’s pretty easy to spot different species in the human-scale part of the plant and animal kingdoms. But a new study shows that species differences aren’t so clear, at least as currently measured, when it comes to microscopic bacteria.



MSU researchers have spotted significant differences in genetic libraries among thought-to-be similar bacteria strains. The results, published this week in the journal the Proceedings of the National Academy of Sciences, suggest that new definitions are needed to catalogue bacteria – single-celled organisms with at least a 3.5 billion-year history. "It’s important to point out the importance of these small microbes on Earth; even though they are small, their mass in soil and water is equal to that of all plants," said MSU microbiologist James Tiedje, one of the study’s authors. "Furthermore, they are responsible for recycling the key elements of life so life on Earth can continue."

DNA, used by all life including bacteria to store genetic information, is a double-stranded molecule. When a given DNA molecule is split in two, for instance by heating it up, its two strands will spontaneously find each other, or reassociate, when the temperature drops. Scientists have long exploited this fact in their rough rule-of-thumb approach for saying just what makes up a species of bacteria. Single strands of DNA from two bacteria are mixed together. If most of these strands reassociate – specifically, if 70 percent of strands from bacteria A come together with strands from bacteria B – then the two bacteria strains are said to members of the same species.


Tiedje and his MSU colleague, microbiologist Konstantinos Konstantinidis, set out to put this mix and match approach to the test. The two scientists selected 70 related bacteria whose genomes, or complete genetic libraries, had been fully sequenced. A sequenced genome gives scientists what amounts to a card catalogue guide to an organism’s genetic information.

The MSU scientists downloaded the already-sequenced bacteria genomes from a variety of sites on the Internet. Then they did some cross-card catalogue comparisons. To their surprise, many bacteria that are considered members of the same species by the current mix and match approach, often share as few as 65 percent of their genes. Humans, in comparison, share 75 percent of their genes with fish. No one’s calling for the species rules to be rewritten so that humans are lumped with their distant underwater relatives. And when it comes to bacteria, the authors say, the current species definition appears to be too liberal.

Much of the differences between genetically-similar bacteria appear to be the result of environmental pressures. E. coli bacteria, for instance, exists everywhere from the intestines of warm blooded animals to paper mills. Any new way of tallying up bacteria species should "accommodate the ecological distinctiveness of the organisms," the authors write. "The point is about the value of a correct understanding of species – people expect a species to have certain traits and live in certain habitats," said Tiedje, whose work is also supported by the Michigan Agricultural Experiment Station. "If the species definition is not reasonably predictive of this, then it loses its value. This can be important for pathogen identification, quarantine or biotechnology, for example."

Konstantinidis and Tiedje also noted that even bacteria with genetic card catalogues that were as much as 99 percent similar had enough outward differences to be separate species. This shouldn’t come as a shock. Humans and chimpanzees, in comparison, share 98.7 percent of their DNA. But that small difference at the genetic level results in a big difference when it comes to outward appearance and Konstantinidis and Tiedje’s work is supported by the Bouyoukos Fellowship Program, the U.S. Department of Energy’s Microbial Genome Program, the Ribosomal Database Project and the MSU Center for Microbial Ecology.

Jim Tiedje | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>