Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

10 Million Euro Technology Project Makes Europe a leader in Biocrystallography

09.02.2005


A project to create a common platform throughout Europe for researchers working in the field of ‘biological crystallography’ is underway thanks to a grant of 10 million euros from the EU’s 6th Framework Programme (FP6).



The BIOXHIT (Biocrystallography on a Highly Integrated Technology Platform) project plans to integrate and further develop the best of current technologies at major European centres for research in structural biology. It will then weave them into a single standardised platform, combining a strongly focused research programme with networking, training and mobility of staff under a single and efficient management structure.

Biological crystallography aims to create precise, three-dimensional “architectural” models of biological molecules. Without such models at hand, it is almost impossible to understand biological processes - for example, the way proteins and other molecules behave in cells - or to design new drugs that will affect their functions. The most common method for obtaining such three-dimensional models is to bombard crystallised proteins with high-powered X-rays generated at huge synchrotron facilities.


“The components necessary to solve molecular structures are already in place,” says Dr. Kim Henrick from the European Bioinformatics Institute (EMBL-EBI) in Hinxton, one of the leading UK project partners. “However these tools were not originally designed for the high-throughput work required today because of the number of molecules discovered in the many genome sequencing projects. Each step of three-dimensional analysis is at a different state at each facility. This major grant will support the development and the integration of the best technology at each step, and then spread that across all of the sites.”

“One immediate effect of BIOXHIT will be a significant reduction in the time involved in obtaining each structure. Robots, for example, can perform tasks automatically, quickly, and at a consistent and high precision, replacing time-consuming manual steps. The project specifically calls for improvements in the process by which samples are handled, the equipment needed to detect X-ray patterns, and the computers and software needed to model structures. A result of this will be to attract more researchers to work on protein structures.”

Training activities are a cornerstone of the project - being funded under the thematic area ‘Life sciences, genomics and biotechnology for health’ of FP6 - with over 20 partners throughout Europe. A number of Training, Implementation and Dissemination centers will be created outside the participating laboratories to disseminate the know-how. A proactive training effort will take place at synchrotron facilities, and then be spread to satellite centres to disseminate biocrystallography technologies to local European communities.

“Biocrystallography is a complex area that used to be limited to a small number of specialists”, says Claire Horton, FP6UK National Contact Point for Life sciences, genomics and biotechnology for health. “This has now changed and we have researchers in all areas of biology who want to solve molecular structures. BIOXHIT not only make this very user friendly but it will also allow them to send samples and work remotely.”

“The current Framework Programme (FP6) runs until 2006 and organisations wanting free information on how to access some of the €19bn available should log on to http://fp6uk.ost.gov.uk or call central telephone support on 0870 600 6080.”

Dave Sanders | alfa
Further information:
http://fp6uk.ost.gov.uk

More articles from Life Sciences:

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>