Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rats infected as newborns grew up vulnerable to memory problems during an immune challenge

07.02.2005


Research confirms how early-life events shape later physiology



Underscoring the value of good prenatal care, new research suggests that early infection may create a cognitive vulnerability that appears later during stress on the immune system. Researchers at the University of Colorado at Boulder have reported that rats who experienced a one-time infection as newborns didn’t learn as well as adult rats who were not infected as pups, after their immunity was challenged. The research is in February’s Behavioral Neuroscience, published by the American Psychological Association (APA).
The findings fit into a growing body of evidence that even a one-time infection can potentially permanently change physiological systems, a phenomenon called "perinatal programming."

Understanding how infection in newborns can disrupt memory in immune-challenged adults may help scientists to understand how exposure to germs or environmental stressors before or just after birth may foster susceptibility to neuropsychiatric and neurodegenerative diseases. For example, prenatal viral infection has been implicated in schizophrenia, autism and cerebral palsy; bacterial infection is a risk factor for Parkinson’s disease. Up to 20 percent of pregnancies have complications involving infections of the uterus and its contents, a number that will rise as more children are born premature.



In the study, a team led by Staci Bilbo, PhD, injected a group of 49 rat pups on postnatal Day 4 either with the common intestinal bacteria E. coli, with salt water, or with nothing. In rats, Day 4 is like the third trimester in human pregnancies, a time when the brain grows significantly.

Once the pups grew up, Bilbo and her colleagues tested the adults’ memory about 60 days after birth. To test memory, each rat was allowed to explore a novel experimental chamber for several minutes on the first day. On the second day, each rat was placed back into the chamber and was shocked for two seconds and then put back in its home cage. After 24 hours, the researchers again put each rat in the experimental chamber and recorded whether the rats froze -- was immobilized by fear -- or stayed active.

All groups of rats froze the same amount, indicating they had learned. However, immediately after they explored the experimental chamber on the first day, a second group of these rats was injected with a low dose of lipopolysaccharide (LPS), a bacterial component that causes flu-like symptoms,. This time, the rats infected with E. coli as newborns froze 70 percent less often than the rats who’d been injected with salt water as newborns. In other words, under immune stress, the early-infected rats learned to fear the place where they’d been shocked significantly less often than rats who had not been infected as pups. They simply didn’t remember it was dangerous.

In a second experiment, the researchers injected 32 different neonatally infected and control adult rats with salt water or with bacterial LPS. Two hours later, they euthenized the rats and checked brain markers of the immune response. Because it spurs an immune response without live bacteria, LPS helps to reveal how the immune system works on its own, without the complication of side effects.

The team found that E. coli-infected pups later injected with LPS had significantly lower concentrations of cytokines called interleukins than control pups (they tested 32 PUPS in all). Immune cells release these cytokines, or certain protein molecules, in response to germs. Prior research had suggested that higher IL-1BETA in the brain’s hippocampus, a key memory area, disrupts the consolidation of memories following a learning experience. Thus it appears that there may be an optimal range for IL-1BETA, with either too much or too little inhibiting memory storage. Bilbo says, "The take-home message is that immune responses in a healthy brain are tightly regulated and controlled; any alteration in these responses is likely to cause problems."

She adds that, "Memory impairment in wild animals would undoubtedly have severe implications for survival, for example remembering nest sites, food sites and predator vicinities, as well as for fitness, for example remembering territories and potential mate locations."

Bilbo stresses that adults rats who were not infected as pups do not suffer memory impairment as the result of adult infection, and those who were infected are completely normal until they get that second immune system challenge. The relatively uncommon one-two punch seems to cause the problem, although researchers don’t know how long it lasts. Still, says Bilbo, "This may go far to explain some of the individual variability in disease susceptibility, other than genetic variation, in animals in the wild and perhaps humans."

The authors conclude that neonatal infection can create later problems by changing how well the body can respond to future immune challenges. Those changes affect how well memories are stored. The early alterationS may be to the basic architecture of glial cells called astrocytes within the hippocampus, which in turn help the central nervous system respond to injury or infection. Because astrocytes also help to determine the number and connectivity of nervous system synapses early in life, especially the first week after birth in rats, they may be involved in the ability to learn and remember, possibly via some link (says Bilbo) to cytokine IL-1BETA production.

APA Public Affairs Office | EurekAlert!
Further information:
http://www.apa.org
http://www.apa.org/releases/earlylife_article.pdf

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>