New component of the ’brakes’ on nerve regeneration found

Among the principal obstacles to regenerating spinal cord and brain cells after injury is the “braking” machinery in neurons that prevents regeneration. While peripheral nerves have no such machinery and can readily regenerate, central nervous system (CNS) neurons have their brakes firmly in place and locked.


Now, two groups of scientists have independently found a new component of that braking machinery, adding to understanding of the regulation of neuronal regeneration and of possible treatments to switch off the brakes on regrowth of spinal cord or brain tissue.

The two groups–one group led by Jong Bae Park, Glenn Yiu, and colleagues from Children’s Hospital Boston and the other led by Sha Mi and colleagues of Biogen Idec, Inc.–discovered that a protein variously called TAJ or TROY acts as an important part of the receptor on neurons that responds to growth-inhibitory molecules in myelin. Specifically, these molecules prevent the growth of the cablelike axons of injured neurons. Myelin is the fatty sheath that encases neurons and acts as an insulator and aid to the transmission of nerve impulses.

Researchers knew that CNS neurons had receptors on their surface that accepted the inhibitory molecules–like a key fitting a lock–and switched-on inhibitory signaling within the neuron. They had also shown that a protein called p75 could function as a component of the complex of proteins that make up this receptor. The puzzle, however, was that p75 is not widely made in the adult neurons in which this inhibitory receptor complex is known to function.

The two research groups turned their attention to TAJ/TROY because it is a member of the same family of receptor proteins–called TNF receptors–as p75. Their experiments revealed that TAJ/TROY is produced throughout the adult brains of mice. Also, they found that TAJ/TROY readily fits into the inhibitory receptor complex and that the resulting receptor complex switches-on the inhibitory machinery within neurons. Also, they found that treating neurons with a nonfunctional version of TAJ/TROY abolished neurons’ response to the “braking” molecules produced by myelin and encouraged neuron growth.

“Given the limited expression of p75, the discovery of TAJ function is an important step for understanding the regulation of axon regeneration,” wrote Mi and colleagues.

Wrote Park and colleagues, “The implication that more than one TNF receptor member may be involved in myelin inhibition adds a new level of complexity to designing therapeutic strategies for treating CNS injury.” They cited studies showing that TNF receptors are expressed in many types of cells in the CNS and are intimately involved in inflammatory responses that also play a role–perhaps harmful, perhaps beneficial to regeneration or recovery–in regulating response to injury. “Further characterization of the underlying mechanisms of these findings and their relation to myelin inhibition may provide important insights into designing therapeutic strategies to block myelin inhibition and cell death in the context of CNS injury,” they wrote.

Media Contact

Heidi Hardman EurekAlert!

More Information:

http://www.cell.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors