Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy promising for growing tooth-supporting bone

03.02.2005


A University of Michigan research team has found that introducing a growth factor protein into a mouth wound using gene therapy helped generate bone around dental implants, according to a new paper in the February issue of the journal Molecular Therapy.



In a patient with a sizeable mouth wound, replacing a tooth takes more than simply implanting a new one---the patient also needs the bone structure to anchor the new tooth in place. Such reconstructive surgery today involves either taking a bone graft from the patient’s chin or jaw, which leaves a second wound needing to heal, or using donated bone from a tissue bank, which yields unpredictable results.

William Giannobile, professor of periodontics, prevention and geriatrics, led a team at the U-M School of Dentistry that delivered the gene encoding for bone morphogenetic protein-7 (BMP-7) to large bone defects in rats in an attempt to turn on the body’s own bone growth mechanisms. The study showed that animals that got the BMP-7 treatment produced nearly 50 percent more supporting bone around dental implants than those receiving the conventional treatment.


"This study represents a proof-of-concept investigation. We are encouraged about the promise of this treatment," said Giannobile, also an associate professor of biomedical engineering and director of the Michigan Center for Oral Health Research.

More work will need to be done before the approach can be tested in humans, Giannobile added. He said he optimistically would like to see initial trials begin in humans in four to seven years.

BMP-7 is part of a family of proteins that regulates cartilage and bone formation. Recent studies have shown that BMPs are present in tooth development and periodontal repair.

This study mixed BMP-7 genes with an inactivated virus in a gel-like carrier and injected it into wounds. Giannobile said using a virus, with the harmful effects turned off, harnesses the virus’ ability to enter into cells and use their genetic machinery.

Once inside the cell, the viruses help BMP-7 genes get where they need to be in the host’s cells to boost bone production. Gene expression producing BMP-7 proteins peaked after a week. Giannobile said that was ideal because the team did not want to make any permanent genetic changes. The gene acted quickly to get bone growth started, then disappeared within about 28 days.

Giannobile said a next step in this process could include looking for non-viral approaches to delivering gene therapy to the defect site. Alternatively, scientists could conduct the gene therapy outside the body using a tissue biopsy and then transplant the genetically-modified cells back into the patient, but this would require two surgical procedures instead of one.

The Molecular Therapy paper is titled "BMP Gene Delivery for Alveolar Bone Engineering at Dental Implant Defects," and the work was supported by the National Institutes of Health and National Institute of Dental and Craniofacial Research.

Giannobile is part of a cross-campus program called Tissue Engineering at Michigan, funded in part by the National Institute for Dental and Craniofacial Research. TEAM aims to provide an interdisciplinary, research-intensive environment for those pursuing careers in the oral sciences, with a focus in the area of restoration of oral-craniofacial tissues.

Co-authors on the paper include Courtney A. Dunn, adjunct clinical lecturer in orthodontics; Qiming Jin, research associate in periodontics, prevention and geriatrics; Mario Taba Jr., research fellow in periodontics, prevention and geriatrics; Renny T. Franceschi, associate dean for research and professor of periodontics, prevention and geriatrics, all at the U-M School of Dentistry. Francesci also is a professor of biological chemistry. R. Bruce Rutherford, a former U-M Dentistry professor who now serves as chief scientific officer of private tissue engineering firm Ivoclar Vivadent-Dentigenix, was a co-author, as well.

Colleen Newvine | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>