Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rush physicians using gene therapy for heart patients with moderate to severe chest pains

03.02.2005


Rush is Only Chicago Medical Center Among 20 U.S. Sites in Clinical Study



Individuals with moderate to severe chest pains (angina) who have not found relief from medication may benefit from a new gene therapy approach being used by cardiologists at Rush University Medical Center to grow new blood vessels in the heart.

The phase II clinical research study uses vascular endothelial growth factor-2 (VEGF-2) in the form of a solution containing a DNA plasmid that is delivered using catheterization to heart tissue that has been damaged from insufficient blood flow.


Once the catheter reaches the targeted site inside of the heart, the VEGF-2 is injected into the heart muscle region with inadequate blood supply. The DNA plasmid is then taken up by the middle muscular layer of the heart wall near the injection site. Inside the cell, the DNA encoded VEGF-2 expresses itself which in turn stimulates the growth of new blood vessels by promoting the proliferation of endothelial cells in the heart.

New blood vessels are required to provide oxygen-carrying blood to heart muscles to compensate for the blocked heart arteries. The subsequent, improved blood flow relieves the painful symptoms of angina.

"The process of growing new blood vessels, or angiogenesis, should occur over the course of four to eight weeks following the procedure which is done in the cardiac catheterization lab at Rush," said Dr. Gary L. Schaer, the principal investigator of the trial at Rush and director of the Rush Cardiac Catheterization Labs. "The patient goes home the next day." Several patients have received the gene therapy and all are doing well.

Individuals who may be candidates for this gene therapy study trial must have moderate to severe angina, but cannot also be candidates for treatment using angioplasty or bypass surgery. Angioplasty involves a catheterization with a balloon-like device that opens blocked arteries, while bypass surgery requires open-heart surgery to place veins removed from the patient’s leg or arteries taken from the patient’s chest wall or arm to "bypass" the blocked blood vessels.

While both of these treatments have been shown to be successful in relieving severe chest pains resulting from blocked arteries, a significant percentage of patients eventually do not respond well to either treatment, often requiring another angioplasty or bypass operation, noted Schaer. "If gene therapy proves to be safe and effective, it will represent an important new approach to improve the quality of life in these seriously ill patients with refractory chest pain," said Dr. R. Jeffrey Snell, study co-investigator and Schaer’s colleague at Rush.

In the new study, patients will be randomly assigned to receive the gene administered through a cardiac catheter threaded into the heart from a leg artery or a placebo delivered using the same method. As required by the U.S. Food and Drug Administration, the study is "double blinded," which means that neither the doctor nor the patient will know whether he or she is receiving the gene therapy or a placebo. For every three patients that receive the active gene, one will receive a placebo. Following treatment, patients enrolled in the study will be examined for chest pain at one month, three months and six months. A total of 404 patients will be enrolled in the study at the 20 study sites across the country.

The Genetic Angiogenic Stimulation Investigational Study (GENASIS) is funded by Corautus Genetics.

More than 11 million people in the United States suffer from coronary artery disease. Many patients receive medications to increase blood flow but nearly 500,000 angioplasties and coronary bypass procedures are performed each year in those patients who do not benefit from medication.

John Pontarelli | EurekAlert!
Further information:
http://www.rush.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>