Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Temple researcher attempting to create cyclic ozone using ultrafast lasers

02.02.2005


If successful, discovery could play an important role in putting a man on Mars

Robert Levis, Ph.D. (center), Director of the Center for Advanced Photonics Research, demonstrates the ultrafast laser beams used to detect the cyclic ozone reaction product. Assisting Levis are (L-R) Alexei Filin, Ph.D.; Ryan Compton; and Matthew Coughlan.

With nearly twice the energy of normal, bent-shaped ozone (O3), cyclic ozone could hold the key component for a future manned-mission to Mars. No one has ever seen-let alone made-cyclic ozone. But that could all change at Temple University’s Center for Advanced Photonics Research, which has been awarded a one-year, $1.25 million grant to develop cyclic ozone by the Defense Advanced Research Projects Administration (DARPA).



The research is being carried out under the guidance of Center Director Robert J. Levis, Ph.D., a pioneer in strong field, laser-based chemistry and adaptive photonics. Strong field chemistry uses ultrafast lasers to produce intense laser pulses that create tremendous electric fields around a molecule. This forms-for a brief instant in time-a new molecule that chemically can react in new and unexpected ways. Levis and his group began pioneering this revolutionary technology about a decade ago. "The formation of cyclic ozone is a high-risk project," concedes Levis. "No one has ever taken ozone and made the free cyclic form, where every oxygen atom is bound to every other oxygen atom, making it look like an equilateral triangle. "Nobody knows exactly what the molecule looks like spectroscopically or how to make it," he adds. "And that’s exactly the type of high-risk, high-payoff problem that our laser-based technologies can figure out."

Levis points out that the successful production of cyclic ozone could play an important role in putting a human on Mars because rockets could be able to carry one-third more payload. "The bent form of ozone carries about one-and-a-half volts of energy, while cycle ozone carries about three volts," says Levis. "So there’s no more mass, but you can get much more energy when the cyclic ozone combines with hydrogen and is burned. "This is way-over-the-horizon research," he adds. "But if you can produce cyclic ozone, that might be a key component to interplanetary space exploration."

Because cyclic ozone has never before been characterized, Levis and the Temple researchers-Dmitri Romanov of physics and Spiridoula Matsika of chemistry-are relying exclusively on an evolutionary search strategy theory to help them synthesize the molecule using ultrafast lasers. Researchers from the chemistry and chemical engineering departments at Princeton University and the mathematics department at Yale University have been subcontracted by Levis to assist in the development of the search theory.

The Center for Advanced Photonics Research (www.temple.edu/capr) is focused on developing new science and technologies through intense laser-molecule interactions. The center has three of the most powerful laser systems on the East Coast each with a laser pulse shaping capabilities. Research ranges from probing fundamental physics principles to detecting chemical warfare agents. "One of the aspects that DARPA finds fascinating is that these shaped reagents have what’s called a massive ’search space,’" says Levis. "The ’search space’ is huge, something like 1040 (ten to the fortieth power) possibilities, more than the number of stars in the universe. There are an incredible number of paths we can take to find cyclic ozone and we have to search through them somehow."

Levis equates the size of the search space to the variability in the human genome, composed of four distinct bases strung in a genome containing roughly three billion bases. "That’s four to the three billionth different ways you can arrange those four bases," he says. "And yet, humans have evolved into an extremely complex organism."

The question is how did this organization occur, and Levis answers by saying that evolution, or Mother Nature, has an excellent search strategy. "What we’ve managed to do here at the center is take that evolutionary search strategy and put it into an experimental, chemical situation," he says. "It’s an experimentalist’s dream. We have a target molecule that’s never been made before, and we’re going to try to make it with technology that is right on the horizon, and we’re going to detect it relying on calculations that are state-of-the-art."

Levis says his team, which also includes chemist Herschel Rabitz and chemical engineer Yannis Kevrekidis from Princeton and mathematician Raphy Coiffman from Yale, will be making only a small amount of cyclic ozone, since his laser-rigs would not be capable of mass-producing it. "This laser system will only produce micro-grams, which won’t power the Space Shuttle," he says. "But once we’ve made even a little, other scientists and chemical engineers can study it, learn more about the potential energy surface and chemical reactivity, and possibly find a way to reverse engineer a catalyst to produce it in mass quantities." Preston Moretz, Science Writer, 02.01.05

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>