Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compound from rare plant shows promise in treating breast cancer

02.02.2005


They started with a bare room and an idea. Now, after five years of painstaking, sophisticated tests, scientists at the University of Virginia Health System have discovered that a compound, derived from a rare South American plant, stops the growth of human breast cancer cells in laboratory cultures.



U. Va. Health System scientists Deborah Lannigan and Jeffrey Smith hope that, after further testing, their discovery could translate into a successful drug for the treatment of breast cancer. The disease is the second leading cancer killer of women in the U.S., according to the American Cancer Society, with an estimated 40,410 deaths.

The compound, called SL0101, comes from the plant Forsteronia refracta, a nondescript member of the dogbane family found in the Amazonian rain forest. The compound works like a key in a molecular lock. It inhibits the action of a cancer-linked protein called RSK, which the researchers discovered is important for controlling the growth of breast cancer cells. Interestingly, SL0101 does not alter the growth of normal breast cells. The discovery is detailed in the Feb. 1, 2005 issue of the journal Cancer Research and can be found online at: www.cancerres.aacrjournals.org.


"By preventing RSK from working, we completely stopped the growth of breast cancer cells but did not affect the growth of normal breast cells," said Lannigan, an Assistant Professor of Microbiology at the U. Va. Cancer Center. She compares this discovery to the development of the drug Gleevec for the treatment of chronic myeloid leukemia. Like Gleevec, SL0101 is a signal transduction inhibitor that interferes with the pathways that signal the growth of tumors. "Gleevec is an exciting discovery and we’re hoping to have similar success with SL0101," Lannigan said.

For now, Lannigan and Smith have begun testing the compound in animal models. "The next step is to see if SL0101 will prevent the growth of human tumor cells in mice," said Smith, a Research Assistant Professor of Pathology at the U.Va. Cancer Center. "We will modify the structure of SL0101, if necessary, to eventually find a compound that can be carried through to human clinical trials. That’s the goal. But human trials will likely be years down the road." The discovery of this potential anti-cancer compound at a U.Va. lab, Lannigan said, also highlights the important role of academic research in drug development.

The researchers collaborated on this discovery with a U.Va. Professor of Chemistry, Dr. Sidney Hecht, who maintains a large number of exotic plants collected by the National Cancer Institute in the 1960’s for research purposes. It took years of work to identify and characterize SL0101 as a specific RSK inhibitor. "Finding out that RSK is a good drug target for breast cancer is very exciting," Smith said.

Cancer patients themselves can also take credit for this discovery. A group of volunteers from "Patients and Friends of the U.Va. Cancer Center" provided funds at a crucial stage of the research.

Bob Beard | EurekAlert!
Further information:
http://www.virginia.edu

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>