Pro-inflammatory enzyme linked to diabetes; Immune system’s macrophages may be key to treatment

An enzyme that initiates inflammation has been directly linked to insulin resistance and resulting type II diabetes by researchers at the University of California, San Diego (UCSD) School of Medicine. In addition, the team suggests that inhibition of the enzyme in the immune system’s macrophages may be a new diabetes therapy.

Published in the February 2005 issue of the journal Nature Medicine, the study describes research in mice that identifies enzyme IkB kinase â (Ikk-â) as a central coordinator of inflammatory responses in the liver and macrophages, the immune system cells which attack infections.

Both control mice and mice with Ikk-â deleted in specific types of cells were fed a high-fat diet that normally causes metabolic syndrome and type II diabetes. While the control mice developed the diabetes and insulin-resistant symptoms, mice in which the Ikk-â was deleted from microphages retained their healthy insulin levels.

“The potential for a new diabetes treatment is great,” said one of the study’s senior authors, Jerrold Olefsky, M.D., chief of UCSD’s Division of Endocrinology and Metabolism in the Department of Medicine, and associate dean for scientific affairs for the School of Medicine. “An inhibitor of Ikk-â could be used, or an inhibitor of any other molecule in the inflammation pathway.”

Affecting 18.2 million Americans, diabetes is a disease in which the body does not produce or properly use insulin, a hormone necessary to convert sugar, starches and other food into energy needed for daily life. Previous studies in the past few years have implicated inflammation as playing a role in diabetes, but just how this occurred was unknown.

The researchers generated mice without Ikk-â in liver cells that play a direct role in insulin-regulated glucose metabolism, and in systemic myeloid cells, pivotal players in inflammatory responses as they produce macrophages.

In response to challenges with a high-fat diet, mice with Ikk-â deficient myeloid cells retained insulin sensitivity in all target tissues. Because the myeloid cells (and their macrophages) are systemic – able to travel throughout the body – they were identified by the researchers as the best target for diabetes treatments.

The mice lacking Ikk-â only in the liver retained their insulin sensitivity in the liver but became insulin resistant in fat and muscle. Other tissue, such as muscle, was not tested in this study, because a previous study has shown that deletion of Ikk-â in muscle has no effect on obesity-induced insulin resistance and type II diabetes, although muscle is a major insulin-responsive tissue.

Media Contact

Sue Pondrom EurekAlert!

More Information:

http://www.ucsd.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors