Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test is first step in early detection of Alzheimer’s disease

01.02.2005


A new use of an ultra-sensitive method that employs bionanotechnology might lead to a clinical test capable of diagnosing Alzheimer’s disease in its earliest stages -- instead of during an autopsy.



Scientists at Northwestern University have become the first to detect in living humans a biomarker associated with Alzheimer’s disease, a development that promises early intervention when therapeutics may be most effective -- long before plaques and tangles develop in the brain and dementia sets in.

A study by the Northwestern team shows that bio-bar-code amplification (BCA) technology, which was developed at the University, can detect in human cerebrospinal fluid (CSF) miniscule amounts of a toxic protein that may be responsible for the early neurological deterioration in Alzheimer’s disease. The findings will be published online the week of Jan. 31 by the Proceedings of the National Academy of Sciences (PNAS).


"We have demonstrated the first diagnostic test for the potential Alzheimer’s biomarker known as an ADDL," said Chad A. Mirkin, director of the Institute for Nanotechnology at Northwestern and an author on the PNAS paper. "This protein is only five nanometers wide and present in cerebrospinal fluid at very low concentration, making it very difficult to detect. Our BCA technology, which is a million times more sensitive than any other diagnostic technology, can accurately identify ADDLs, even in CSF."

Amyloid ß-derived diffusible ligands or ADDLs (pronounced "addles") are small, soluble aggregated proteins. The clinical data strongly support a recent theory in which ADDLs accumulate at the beginning of Alzheimer’s disease and block memory function by a process predicted to be reversible. William L. Klein, professor of neurobiology and physiology in Northwestern’s Weinberg College of Arts and Sciences, and two colleagues reported the discovery of ADDLs in 1998.

"Detection of plaques in patients may be too late," said Klein, an author on the PNAS paper who last year demonstrated that ADDLs specifically attack and disrupt synapses, the nerve cell sites responsible for information processing and memory formation. "In the last three years, there has been a big effort in Alzheimer’s research to identify and detect biomarkers in cerebrospinal fluid. We think the accumulation of ADDLs is likely to be the first biomarker in Alzheimer’s disease, and now this extraordinarily powerful detection technology has changed what we think might be possible."

Klein and Mirkin, who is George B. Rathmann Professor of Chemistry, led a research team that, using BCA technology, measured the concentration of ADDLs present in the cerebrospinal fluid of 30 individuals. ADDL concentrations for the individuals who had been evaluated and determined to have Alzheimer’s disease were consistently higher than the levels from the control group of healthy individuals who were not demented; the two groups were easily differentiated. The researchers next would like to develop the technology so that the test could be done using a blood or urine sample instead of cerebrospinal fluid, which is more difficult to obtain.

Since its invention in 2003, the bio-bar-code amplification technology has become a powerful analytical tool for the detection of both proteins and DNA. The extraordinary sensitivity and selectivity of the test, which also has been used to detect trace amounts of anthrax lethal factor and prostate specific antigen (PSA), could be used to target known biomarkers for a wide variety of diseases, such as HIV infection, various cancers and Creutzfeldt-Jakob disease, enabling early diagnosis that would be impossible with conventional technology.

To detect ADDLs, a magnetic microparticle and a gold nanoparticle are each outfitted with an antibody specific to the ADDL antigen. When in solution, the antibodies "recognize" and bind to the ADDL, sandwiching the protein between the two particles.

Attached to each tiny gold nanoparticle (just 30 nanometers in diameter) are hundreds to thousands of identical strands of DNA. Mirkin calls this "bar-code DNA" because they have designed it as a unique label specific to the target. After the "particle-ADDL-particle" sandwich is removed magnetically from solution, the bar-code DNA is removed from the sandwich and read using standard DNA detection methodologies.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

nachricht Removing toxic mercury from contaminated water
21.11.2018 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>