Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harvard scientists discover how the venus flytrap snaps

27.01.2005


A team of applied mathematicians, physicists, and biologists has discovered how the Venus flytrap snaps up its prey in a mere tenth of a second by actively shifting the curved shape of its mouth-like leaves. Their study, published in the Jan. 27 issue of the journal Nature, investigates the series of events that occur from the time the plant’s leaves are stimulated to the time the trap is clamped shut.


Superposition of the open and closed leaves of the Venus flytrap. The glass needle in the foreground was used to trigger the closure. Note that the leaves flip by almost turning inside out - similar to the flipping of a contact lens, plastic lid or the reversal of a torn tennis ball. Courtesy of Forterre and Mahadevan.



"Our work complements prior research," says Lakshminarayanan Mahadevan, Gordon McKay Professor of Applied Mathematics and Mechanics in Harvard University’s Division of Engineering and Applied Sciences and affiliate in the Department of Organismic and Evolutionary Biology in Harvard’s Faculty of Arts and Sciences. "In addition to looking at biochemical events, we looked at what happened after the plant was stimulated and found that the rapid closing is due to a ’snap-buckling instability’ that the plant itself controls."

To trap its prey, the carnivorous plant relies on both an active biochemical and a passive elastic process, say Mahadevan and former students and postdocs Yoël Forterre, Jan M. Skotheim, and Jacques Dumais. When an insect brushes up against a hair trigger, the plant responds by moving water to actively change the curvature of its leaves. While exactly how the water is moved is not completely understood, the scientists observed that the deformation of the leaves, once stimulated, provided the means by which elastic energy was stored and released, creating a simple yet effective jaw-like movement.


"In essence, a leaf stretches until reaching a point of instability where it can no longer maintain the strain," Mahadevan says. "Like releasing a reversed plastic lid or part of a cut tennis ball, each leaf folds back in on itself, and in the process of returning to its original shape, ensnares the victim in the middle. The hydrated nature of the leaf quickly dampens the vibrations caused by the movement, so the unlucky bug doesn’t spill out. It then takes the plant up to eight hours to ready its leaves for the next unsuspecting bug."

To reveal how the Venus flytrap snaps, the researchers painted ultraviolet fluorescent dots on the external face of the leaves and filmed them under ultraviolet light using high-speed video. By using mirrors to record stereo images of the process, they were able to reconstruct the geometry of the leaf. Finally, a simple mathematical model provided them with a way to understand the quantitative and qualitative aspects of snapping such as when the plant snaps, how long it takes before it goes into action once stimulated, and how fast the entire process happens.

"Our explanation relied on interplay between theory and experiment, and on the interdisciplinary interests and nature of our group, with expertise ranging from applied math and physics to biology," Mahadevan says.

In addition to shedding light on an age-old riddle involving a plant Charles Darwin called "one of the most wonderful in the world," the discovery has implications for biomimetic systems. One day, engineers might be able to emulate the plant’s ingenious alternative to muscle-powered movements in tiny artificial devices, such as those that control the flow of minute amounts of liquids or gases. Common applications that already use related technology include valves and switches in microfluidic devices, hydraulic sensors and actuators and timed-release drug delivery mechanisms.

Prior explanations of Venus flytrap operation have cited a loosening of cell walls combined with a quick loss of cellular pressure, but it had not been clear how these cellular mechanisms alone could produce the lightning-fast closure of the entire leaf.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu
http://www.deas.harvard.edu/research/Venusflytrap.html.

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>