Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel technology detects human DNA mutations

26.01.2005


Rapid enzyme-free platform allows robust gene identification without gene amplification



Researchers at Nanosphere, Inc. today reported unprecedented benefits in the company’s technology for the medical analysis of human DNA.

Nanosphere’s nanoparticle-based technology allows for rapid, highly-sensitive and specific Single Nucleotide Polymorphism (SNP) genotyping, which is the direct detection of a particular gene and the extent to which it is normal or mutated. The technology, reported in the February 2005 (Volume 33, Number 2), issue of Nucleic Acids Research, allows detection of a SNP in an unknown genotype with a greater than 99 percent confidence threshold and can be used with human DNA obtained from samples as small as a drop of blood. Importantly, the technology eliminates the need for costly, time and labor intensive gene amplification or enzymatic interventions – two widespread methods currently used to perform such analyses.


"Nanosphere’s new SNP analysis methodology for whole genomic human DNA is a powerful example of the versatility of our proprietary ClearReadTM nanoparticle technology," said William Moffitt, Nanosphere’s President and CEO. "This study and the use of nanoparticles to dramatically increase sensitivity in our other proprietary applications -- such as bio-barcode for ultra sensitive detection of proteins -- demonstrate the broad applicability of nanotechnology and its potential to markedly advance the state-of-the-art in nucleic acid and proteomic research and diagnostics."

The analysis of whole human genomic DNA is extraordinarily complex as it requires sifting through the more than one billion base pairs of DNA to find a particular base pair of interest. Once that base pair is located, it is then necessary to determine if either of the bases is mutated (i.e., has SNPs). Nanosphere’s technology can rapidly, easily, and accurately interrogate both bases in the pair to determine if they are homozygous (i.e., both are mutant or normal) or heterozygous (i.e., one is mutant, one is normal) – the most critical step in correlating the SNP with a disease or drug sensitivity.

To do so, Nanosphere scientists employ a two-step process called ClearReadTM technology. This method sandwiches a target DNA SNP segment between two oligonucleotide sequences to greatly increase detection specificity and sensitivity. One segment identifies any mutations in the DNA and the probe, a highly sensitive gold nanoparticle, creates a strong signal accurately indicating the presence of a specific target SNP. Proof of principle, reproducibility, and the robust, simple and rapid characteristics of this technology were demonstrated with unamplified DNA samples representing all possible forms of three genes implicated in hypercoagulation disorders.

Wendy Emanuel | EurekAlert!
Further information:
http://www.nanosphere-inc.com

More articles from Life Sciences:

nachricht A study demonstrates that p38 protein regulates the formation of new blood vessels
17.07.2019 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht For bacteria, the neighbors co-determine which cell dies first: The physiology of survival
17.07.2019 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Tracking down climate change with radar eyes

17.07.2019 | Earth Sciences

Researchers build transistor-like gate for quantum information processing -- with qudits

17.07.2019 | Information Technology

A new material for the battery of the future, made in UCLouvain

17.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>