Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interaction between stem cells and their niches key to differentiation

26.01.2005


Duke University Medical Center cell biologists have defined a signaling system between stem cells and the specialized "niche cells" that harbor and regulate them. The findings provide better understanding of the signals that stimulate stem cells to either create more copies of themselves or to differentiate into another cell type, said the researchers.



Germline stem cells are immature cells in the reproductive system that can proliferate and mature into sperm and eggs. While it is has been appreciated that these stem cells exist in a microenvironment attached niche cells, it has not been well understood how these two cell types communicate.

In their latest study, the results of which were published in the Jan. 26, 2005, issue of the journal Current Biology, the Duke team reported that regulatory genes from niche cells instruct genes in stem cells to determine the future path of the stem cells. Both niche and stem cells possess genes which produce proteins that act as a series of "on-off" switches for stem cell division, the researchers said. The research was supported by the National Institutes of Health.


Over-proliferation of stem cells is one of the leading causes of cancer, while reduced stem cell production is implicated in such disorders as infertility, anemia and immune system deficiencies. It is important to understanding how stem cells receive their cues to differentiate, the researchers continued, because any potential future clinical application of stem cells cannot focus on them alone, but must also take into account the role of niche cells.

For their experiments, researchers led by Duke cell biologist Haifan Lin, Ph.D. studied germline stem cells from the ovaries of the common fruit fly Drosophila. They analyzed the expression of specific genes as the germline stem cells either created additional copies of themselves or differentiated into another cell type known as a cystoblast, which eventually become mature eggs. "We found that stem cells behavior is regulated by the neighboring niche cells, which provide an idyllic hideaway essential to the functioning of the stem cells," Lin said. "Stem cell division is an asymmetric process. After division, one daughter cell remains attached to the niche cell and thus remains as a stem cell, whereas the other daughter cells is detached from niche cells and will thus acquire a different fate."

Lin’s team determined three different genes -- piwi, pumilio (pum) and bam (bag of marbles) – that mediate the interplay between stem cells and niche cells that controls stem cell fate. It has been known that piwi and pum must be activated for successful self-renewal of germline stem cells, while bam is essential for cystoblast differentiation. Piwi, initially discovered in the Lin lab, is the founding member of a family of genes involved in the development stem cells in diverse organisms in both animal and plant kingdoms. pum- and bam-like genes also exist in mammals and humans. "In our experiments we demonstrated that piwi and bam proteins are expressed independently of each other in reciprocal patterns in germline stem cells and cystoblasts," Lin said. "However, overexpression of either one of these genes antagonizes the action of the other in these cells, acting as on-off switches."

According to their new model of niche cell-germline stem cell interaction, activation of the piwi gene in niche cells leads to the production of proteins that block the expression of bam in germline stem cells. The absence of an active bam gene causes pum, and other genes in the stem cells, to become active. The pum gene then prevents the production of proteins involved in differentiation. "The result of this sequence of events is the suppression of differentiation, which maintains the fate of the cell as a germline stem cell," Lin said.

In the cystoblast cell, the signal from piwi is no longer effective because this cell is detached from niche cells, which allows for the expression of the bam gene, which in turn represses the activity of pum, allowing the cell to differentiate. "Therefore, pum can be considered as the switch between self-renewal or differentiation, and signaling from niche cells through bam regulates this switch at the single cell level," Lin explained.

As they have done in their previous studies using the Drosophila model, Lin’s team is also using the mouse model to determine whether or not the same signaling pathways are present in higher organisms. Interestingly, they said, while the piwi gene plays an important role in determining germline stem cell differentiation in Drosophila, its equivalent in mice, miwi, has been shown to be the key gene involved in development of sperm cells. In humans, Lin’s team discovered in 2002 that overexpression of the hiwi gene, a piwi-like gene in human, has been implicated in the development of a common form of testicular cancer, while underexpression can lead to infertility.

First authors of the paper were Akos Szakmary, Ph.D., Duke, and Daniel Cox, Ph.D., now at George Mason University, Manassas, VA.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>