Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify brain regions that decide where we look

26.01.2005


Scientists have found the brain regions that decide where we look, and where to direct our eyes when we’re faced with a difficult choice, such as looking someone straight in the eye or looking away.

According to research published today in Current Biology, the team from Imperial College London and University College London, have found that different areas of the brain are active when we freely select where to look, and when we change our mind and look elsewhere.

Using magnetic resonance imaging (MRI), the researchers discovered two distinct areas within the medial frontal cortex of the brain. One became active when a free choice was made, while the other responded to situations of conflict, when one plan had to be discarded in favour of an alternative.



In the experiment, volunteers were asked to freely shift their eyes while in the MRI scanner, and this resulted in the brain region associated with free choice becoming active. When the volunteers had to change their minds and look elsewhere, a different part of the brain was activated.

Dr Masud Husain from Imperial College London, based at Charing Cross Hospital, said: “This research has revealed the brain regions which decide where we direct our eyes. Sometimes choosing where to look isn’t straightforward. Do you look your boss straight in the eye, or do you decide to look away? Even if you decide to look him in the eye, you might have second thoughts and change our mind - before it’s too late. Different parts of the medial frontal cortex become active when we choose to make an eye movement of our own free will, and when we face a difficult choice involving conflicting alternatives.”

The researchers believe this discovery may also explain why people with damage to the medial frontal cortex often seem incapable of generating actions of their own free will, or choosing between alternative actions.

Tony Stephenson | alfa
Further information:
http://www.imperial.ac.uk.

More articles from Life Sciences:

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Protein droplets keep neurons at the ready and immune system in balance
16.08.2018 | Howard Hughes Medical Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>