Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deficient DNA repair capacity associated with increased risk of breast cancer

19.01.2005


Deficiencies in the ability of cells to repair damaged DNA are associated with an increased risk of breast cancer, according to a new study in the January 19 issue of the Journal of the National Cancer Institute.



DNA repair is the system of defenses designed to protect the integrity of the genome. Studies have suggested that deficiency in cells’ capacity for DNA repair contributes to the accumulation of DNA damage and accelerates the genetic changes involved in carcinogenesis.

To evaluate whether reduced DNA repair capacity in the nucleotide excision pathway that fixes DNA alterations known as bulky DNA adducts is associated with breast cancer risk, Regina M. Santella, Ph.D., of the Columbia University Mailman School of Public Health in New York, and colleagues analyzed cell lines generated from blood samples taken from pairs of sisters in which one sister had been diagnosed with breast cancer and the other had not.


They found that DNA repair capacity was lower in breast cancer patients than in the control subjects. Deficient DNA repair capacity was associated with a twofold increase in the risk of breast cancer. In addition, when the data were stratified into quartiles of DNA repair capacity, the risk of breast cancer was three times higher among women with the poorest DNA repair capacity compared with those with the highest.

"[T]hese data support the hypothesis that deficient DNA repair capacity is associated with susceptibility to breast cancer and may be a valuable in vitro biomarker to identify high-risk subjects, especially in familial breast cancer families," the authors write. "It is unclear at this time whether there are any interventions that could alter DNA repair capacity and what effect such interventions might have on risk."

In an editorial, Marianne Berwick, Ph.D., M.P.H., of the University of New Mexico in Albuquerque, and Paolo Vineis, M.D., M.P.H., of Imperial College in London and the University of Torino in Italy, discuss the difficulties in designing studies of DNA repair capacity and the need for the development of better laboratory tests for such studies. "When DNA repair capacity can be measured easily and quickly, the scientific community will be able to clearly understand the role of DNA repair capacity in the development of cancer and possibly to develop interventions to reduce cancer incidence and mortality," they write.

Sarah L. Zielinski | EurekAlert!
Further information:
http://www.oupjournals.org

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>