Research sheds light on how cancer cells become resistant to treatment

A new study by researchers at Memorial Sloan-Kettering Cancer Center and The Johns Hopkins University provides new insight into how tumor cells can become resistant to anti-cancer therapy.


The scientists observed that a protein called P-glycoprotein (P-gp), which causes resistance to chemotherapy in many tumor types, is able to physically “jump” or transfer between tumor cells and retain its functional properties, protecting otherwise sensitive cells from the effects of anti-cancer treatment in vivo and in vitro. According to the authors, the research is the first to demonstrate that a protein transferred between cells retains its function long enough to allow the recipient cells to survive potentially toxic drug concentrations and ultimately develop intrinsic resistance.

In other words, cells that would normally be sensitive to treatment can develop resistance to it by receiving P-glycoprotein from other cells, making chemotherapy much less efficient. Uncovering the mechanism of this unusual “jumping” of the protein between the cells can potentially improve treatment success.

The authors conclude that their findings offer a new way in which to look at how cells behave in a community of cells within a tumor mass. The results have important implications for genomic analyses within tumor samples because resistance to cancer therapy can be achieved by protein transfer alone.

The new research will be published the week of January 17, 2005 in the online Early Edition of the Proceedings of the National Academy of Sciences (PNAS).

Media Contact

Esther Carver EurekAlert!

More Information:

http://www.mskcc.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors