Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds more than one-third of human genome regulated by RNA

17.01.2005


For many years, DNA and proteins have been viewed as the real movers and shakers in genomic studies, with RNA seen as little more than a messenger that shuttles information between the two. But researchers from Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology have discovered that small RNA molecules called microRNAs regulate thousands of human genes--more than one third of the genome’s protein-coding regions. In other words, a class of molecule once relegated to the sidelines may be one of the principal players in regulating cellular mechanisms.



"It’s exciting to see how many genes are regulated by microRNAs. We now know that this type of gene control is much more widespread than previously appreciated," says Whitehead Member and MIT professor of biology David Bartel.

MicroRNAs interrupt a gene’s ability to make protein. These tiny, single-stranded pieces of RNA are newcomers to biological research. It wasn’t until 2000 that researchers even knew that microRNAs existed in humans. Now, in the January 14 edition of the journal Cell, Benjamin Lewis, a graduate student working jointly with Whitehead’s Bartel and MIT associate professor of biology Christopher Burge, provides the first evidence that microRNAs influence a large percentage of life’s functions.


The team developed a computational method to define the relationship between microRNAs and their target genes. In December 2003, the same group identified 400 genes in the human genome targeted by microRNAs. (Prior to this study, there were no known microRNA targets in any vertebrate.)

In their latest paper, taking advantage of the most recent genome-sequencing data, the team has compared human genome data with that of the dog, chicken, mouse, and rat. For each of the microRNAs and protein-coding genes that are common to these five species, the team looked for correspondence between the microRNAs and the protein-coding genes. They discovered that regulation of a third of these genes has been preserved since the last common ancestor of mammals and chicken, which lived 310 million years ago. "This study is an excellent example of the power of comparative genomics to illuminate how human genes are regulated," says Burge. "As more genome data becomes available and the technology becomes more sophisticated, I think we’ll find that even more genes are targeted by microRNAs," predicts Lewis. In addition, the team discovered some hints about how microRNAs find their targets.

To produce a protein, the cell first makes a template for that protein by constructing a molecule called messenger RNA. MicroRNAs inhibit protein production by associating themselves with particular messenger RNAs, thereby reducing the amount of protein that’s ultimately produced. In this study, the researchers determined which portion of the microRNA is most important for this process, and identified additional determinants in the messenger RNA that are likely to contribute to recognition by microRNAs.

These findings contribute to the recent interest in potential therapeutic uses of RNA. For example, using a technique known as RNA interference, or RNAi, researchers are shutting off genes by delivering into cells artificial microRNA-like molecules called siRNAs. RNAi has already transformed how many labs are investigating gene functions, and siRNAs are being developed for clinical applications. Learning more about how microRNAs operate in human cells should help scientists to understand how best to exploit siRNAs for treating disease.

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>